
Low-temperature Scanning Tunneling Tunneling Microscopy and Spectroscopy Lab (STM/STS)
Research directions
1. Scanning tunneling spectroscopy of electronic states on the material surface studied in fields up to 15T and a temperature range of 300mK – 300K;
2. Scanning tunneling microscopy of the atomic structure of the surface;
3. Andreev spectroscopy of symmetric contact using «break junction» method in the temperature range 1.5К-310К.
Research setups
1. He3 low temperature STM/STS Unisoku USM-1300:
Lowest temperature – 300mК, magnetic fields – up to 15T
2. Break junction: temperature range – from 1.5К up to 310К
Materials under investigation
new superconductors | topologically nontrivial superconducting materials | topological insulators | Weyls semimetals | materials with strong spin-orbit coupling
Electron tunneling through a potential barrier is a single-particle quantum effect. The probability of tunneling exponentially depends on the thickness of the barrier (along the tunneling direction), which is why the tunneling current through the gap between the tip and the sample surface is highly sensitive to the gap width. For this reason, if the tunneling current is kept constant while the tip is moved along the surface at a distance of about 0.1 nm from it, a map of the surface topography with subatomic resolution can be obtained.
For the invention of the scanning tunneling microscope (STM), G. K. Binnig and H. Rohrer were awarded the Nobel Prize in 1986.
An even more important mode of operation involves measuring the local current-voltage characteristic (I-V) of the tunnel junction, the derivative of which (dI/dV) provides information about the local density of states in the sample under study. The figures show examples of (dI/dV) measurements while scanning the tip along the surface of the superconductor NbSe₂ and the topological insulator Bi₂Se₃. In the first case, the revealed symmetry of the electron wave function is visible, while in the second case, features at the energy of the Dirac point (DP), the bottom of the conduction band (BCB), and the top of the valence band (BVB) are observed.
A tunnel junction can be formed in the material under investigation using the “break-junction” method. For this purpose, a microcrack is created in the sample in a controlled manner, resulting in two “banks” of the same material connected by a tunnel junction. This technique allows for the creation and study of “S-N-S” and “S-I-S” type tunnel junctions, enabling the investigation of current-voltage characteristics (I-V) and the dependence of differential conductance (dI/dV) in the contact area. From these measurements, several critical characteristics of superconductors can be extracted, such as the quality and magnitude of energy gaps in the spectrum, as well as their anisotropy and temperature evolution.
The experiments setup is made by laboratory staff and have outstanding characteristics. Additionally, the laboratory is developing methods for creating and studying micro- and nanoscale tunnel mesostructures. Using UV- lithography and electronic lithography, tunneling contacts are fabricated on samples as small as a few microns in size, while focused ion beam (FIB) etching enables sample cuts with nanosized precision. Such structures exhibit better homogeneity and more pronounced crystallographic anisotropy compared to their macroscopic counterparts.
Main results
1. For the first time, it has been demonstrated that in the superconductor EuRbFe₄As₄, the amplitude of the superconducting order parameter remains unchanged upon the establishment of magnetic ordering in the lattice, despite a dramatic drop in the density of superconducting carriers.
2. For the first time, the behavior of the order parameter under pressure in transition metal dichalcogenides NbS₂ and NbSe₂ has been investigated.
3. In the superconductor of the new family RbCa₂Fe₄As₄F₂, the presence of two superconducting condensates with order parameters ΔL = 6.3 meV and ΔS = 2.8 meV has been detected using multiple Andreev reflections spectroscopy.
4. In the superconductor of the new family KCa₂Fe₄As₄F₂, the presence of two superconducting condensates with order parameters ΔL = 6.8 meV and ΔS = 3.2 meV has been detected using multiple Andreev reflections spectroscopy.
5. For the first time, the properties of the vortex state in the new superconductors RbCa₂Fe₄As₄F₂ and KCa₂Fe₄As₄F₂ have been investigated.



Group team
The laboratory staff teach lecture courses such as “Automation of Physical Experiments,” “Quantum Physics of Low-Dimensional Systems,” and “Horizons of Physics.” Students are involved in experimental activities from their very first days at the Center, participate in publishing the obtained results, and present them at conferences.
- AV Sadakov, VA Vlasenko, DV Semenok, D Zhou, IA Troyan, AS Usoltsev, VM Pudalov, Quasi-two-dimensional vortex matter in the superhydride, Phys. Rev. B 109, 224515 (2024) https://doi.org/10.1103/PhysRevB.109.224515
- A. V. Sadakov, A. A. Gippius, A. T. Daniyarkhodzhaev, A. V. Muratov, A. V. Kliushnik, O. A. Sobolevskiy, V. A. Vlasenko, A. I. Shilov & K. S. Pervakov, Multiband, Superconductivity in KCa2Fe4As4F2. Письма в ЖЭТФ. 119, 118 (2024). http://jetpletters.ru/ps/2448/article_36014.pdf
- I. V. Zhuvagin, V. A. Vlasenko, A. S. Usoltsev, A. A. Gippius, K. S. Pervakov, A. R. Prishchepa, V. A. Prudkoglyad, S. Yu. Gavrilkin, A. D. Denishchenko, A. V. Sadakov, Synthesis and Properties of a 12442-Family Superconductor, Письма в ЖЭТФ. 120, 286 (2024) https://doi.org/10.31857/S0370274X24080214
- А. С. Усольцев, А. Т. Даниярходжаев, А. А. Гиппиус, А. В. Садаков, “Сверхпроводящий параметр порядка соединения RbCa2Fe4As4F2”, Письма в ЖЭТФ, 120, вып. 12, 961-969, 2024. https://dx.doi.org/10.31857/S0370274X24120212
- Shilov, A. I., Usoltsev, A. S., & Sadakov, A. V. (2023). Features of the Multigap Superconductivity in Cobalt-Doped NaFeAs. Bulletin of the Lebedev Physics Institute, 50(Suppl 14), S1517-S1521. DOI: 10.3103/S1068335623601917
- В.А. Степанов, М.В. Голубков, А.В. Садаков, А.С. Усольцев, Д.А. Чареев, Спектроскопия андреевского отражения в FeSe: анализ в рамках двухзонной модели, ЖЭТФ, 166(5), 679-687 (2024). DOI: 10.31857/S0044451024110105
- М.В. Голубков, В.А. Степанов, А.В. Садаков, А.С. Усольцев, И.В. Морозов, Исследование контактов Джозефсона Pb0.6In0.4/ KFe2As2 и KFe2As2/ KFe2As2. Проверка симметрии параметра порядка, ЖЭТФ, 163, 180 (2023), DOI:10.1134/S1063776123020085
- В. О. Сахин, Е. Ф. Куковицкий, Ю. И. Таланов, Г. Б. Тейтельбаум, Л. А. Моргун, А. Э. Борисов, А. С. Усольцев, В. М. Пудалов, О перколяционном режиме объемного транспорта в топологическом изоляторе Bi1.08Sn0.02Sb0.9Te2S, Письма в ЖЭТФ, 115 (4), 239 (2022); https://doi.org/10.31857/S1234567822040103
- A. S. Usoltsev, A. V. Sadakov, O. A. Sobolevskiy, V. A. Vlasenko, K. S. Pervakov, E. A. Polianskaya, E. I. Maltsev, Multiband superconductivity in SrFe2−xNixAs2, SN Applied Sciences 4:171 (2022); https://doi.org/10.1007/s42452-022-05047-3
- T. K. Kim, K. S. Pervakov, V. A. Vlasenko, A. V. Sadakov, A. S. Usoltsev, D. V. Evtushinsky, S. W. Jung, G. Poelchen, K. Kummer, D. Roditchev, V. S. Stolyarov, I. A. Golovchanskiy, D. V. Vyalikh, V. Borisov, R. Valenti, A. Ernst, S. V. Eremeev, E. V. Chulkov, V. M. Pudalov, Novel magnetic stoichiometric superconductor EuRbFe4As4, УФН, 192 №7, 790-798 (2022). https://doi.org/10.3367/UFNr.2021.05.039018
- G. Shipunov, B. R. Piening, C. Wuttke, T. A. Romanova, A. V. Sadakov, O. A. Sobolevskiy, E. Yu. Guzovsky, A. S. Usoltsev, V. M. Pudalov, D. V. Efremov, S. Subakti, D. Wolf, A. Lubk, B. Buechner, and S. Aswartham, Layered van-der-Waals topological metals of TaTMTe4 family: crystal growth and characterization, J. Phys. Chem. Lett. 12, 6730 (2021); https://doi.org/10.1021/acs.jpclett.1c01648
- T. K. Kim, K. S. Pervakov, D. V. Evtushinsky, S. W. Jung, G. Poelchen, K. Kummer, V. A. Vlasenko, A. V. Sadakov, A. S. Usoltsev, V. M. Pudalov, D. Roditchev, V. S. Stolyarov, D. V. Vyalikh, V. Borisov, R. Valentí, A. Ernst, S. V. Eremeev, E. V. Chulkov, Electronic structure and coexistence of superconductivity with magnetism in RbEuFe4As4, Phys. Rev. B 103, 174517 (2021); https://doi.org/10.1103/PhysRevB.103.174517