Глава 5

Лекция 5. Баллистический транспорт

Экспериментальное открытие: В. J. van Wees, H. van Houton, C. W. Beenakker et al. (1988) & D. Wharam, T. J. Thornton, R, Newbury et al. (1988).

5.1 Формула Ландауэра (Landauer, 1957)

Одиночный проводящий канал

Рассмотрим систему, схематически изображенную на рисунке 5.1. Квантовая проволока (QW) подсоединена на обоих концах к идеальным подводящим проводам, которые далее соединены с резервуарами электронов. Резервуары поглощают все входящие в них электроны, а также эмиттируют в подводящие провода и QW электроны с энергией < μ_1, μ_2 . Обозначим:

T, R - коэффициенты прохождения и отражения, соответственно, T+R=1;

v - групповая скорость электронов в идеальных подводах и $dn_{\rightarrow}/dE = 1/(\pi \hbar v)$ - плотность состояний для электронов, движущихся слева направо в одномерной системе.

Рис. 5.1: Схема прохождения электронов через QW

Тогда полный ток текущий через систему есть

$$I = ev \frac{dn_{\to}}{dE} T(\mu_1 - \mu_2) = \frac{e}{\pi\hbar} T(\mu_1 - \mu_2).$$
 (5.1)

Обратите внимание: скорость чудесным образом сократилась. Ток через наше баллистическое устройство не зависит от скорости!

Падение напряжения между контактами 1 и 2 равно $V_{21} = (\mu_1 - \mu_2)/e$.

Двух-зажимная проводимость между точками 1 и 2 равна:

$$G = \frac{I}{V_{21}} = \frac{e^2}{\pi\hbar}T.$$
 (5.2)

Проводимость одиночного одномерного канала равна кванту проводимости!

Более точный анализ, который принимает во внимание подводящие провода (мы его не приводим из-за громоздкости), дает:

$$G = \frac{I}{V_{21}} = \frac{e^2}{\pi\hbar} \frac{T}{(1-T)}.$$
(5.3)

5.1. Формула Ландауэра (LANDAUER, 1957) 3

Рис. 5.2: Барьер, разделяющий два Ферми-моря электронов, с положительным напряжением приложенным к правой стороне. (а) случай малого приложенного напряжения, (b) большое приложенное напряжение; электроны с правой стороны не вносят вклада в полный ток.

Повторим это более подробно.

Это выражение может быть выведено более общим и более строгим способом для произвольного потенциального барьера: Рассмотрим электроны, которые налетают на барьер с левой стороны (см. Рис. 5.2) и затем добавим электроны налетающие на барьер с правой стороны.

Ток вследствие электронов прилетающих слева может быть получен с помощью обычного выражения,

$$I = nqv, (5.4)$$

если переписать его более точно, поскольку надо учесть зави-

симость T от импульса k или от энергии ε :

$$I_{\rm L} = 2e \int_0^\infty f[\varepsilon(k), \mu_{\rm L}] v(k) T(k) \frac{dk}{2\pi}$$
(5.5)

Заметим:

- множитель е переводит число электронов в заряд;
- область интегрирования ограничена положительными значениями k, поскольку мы рассматриваем только электроны распространяющиеся слева направо;
- коэффициент $1/(2\pi)$ возникает вследствие объема в k-пространстве;
- Фермиевская функция распределения $f[\varepsilon(k), \mu_L]$ отражает вероятность того, что состояние с энергией ε для электронов слева занято, при значении химического потенциала μ_L на левой стороне;
- коэффициент прохождения барьера T(k) дает вероятность того, что налетающий электрон проходит через барьер вносит вклад в ток.

Заменим интегрирование по k интегрированием по энергии:

$$dk = \frac{dk}{dE}dE = \frac{1}{\hbar v}dE \tag{5.6}$$

Проверим:

$$E = \hbar^2 k^2 / 2m \tag{5.7}$$

$$dE/dk = \hbar^2 k/m \tag{5.8}$$

$$k = mv/\hbar \tag{5.9}$$

$$dE/dk = \hbar v \tag{5.10}$$

5.1. Формула Ландауэра (LANDAUER, 1957) 5

Подставим это в выражение для тока (5.5) и обозначим дно зоны в левом и правом подводах E_L и E_R :

$$I_{L} = 2e \int_{E_{L}}^{\infty} f(E,\mu_{L}) v T(E) \frac{dE}{2\pi\hbar v} = \frac{2e}{h} \int_{E_{L}}^{\infty} f(E,\mu_{L}) T(E) dE.$$
(5.11)

Можно было бы ожидать, что состояния с большей энергией имеют большую скорость и поэтому будут вносить больший ток. Однако, опять скорость удивительным образом точно сокращается в этом выражении (иначе мы бы не получили квантование проводимости). Выражение для тока от электронов движущихся справо налево и слева направо почти идентичны, отличаясь только знаком, значением химического потенциала и пределом интегрирования.

$$I_R = -\frac{2e}{h} \int_{E_R}^{\infty} f(E, \mu_R) T(E) dE.$$
(5.12)

(5.13)

Коэффициент прохождения T(E) одинаков (в соответствие с зеркальной симметрией и симметрией обращения времени). Складывая два выражения получим результирующий ток:

Два замечания: $I = I_L + I_R = \frac{2e}{h} \int_{E}^{\infty} [f(E, \mu_L) - f(E, \mu_R)]T(E)dE.$ 1) Интеграл в интервале от ER до EL я опустил, т.Е.в. этом интервале энергии для R-электронов нет мест слева при низкой температуре, Как видно, ток не пропорционален напряжению и, в об-

щем случае, закон Ома не выполняется. **Проверить:** I = 0 когда V = 0 и $\mu_L = \mu_R$. Имеются три важных предельных случая:

• Когда приложенное напряжение является большим, все состояния для электронов справа могут быть ниже дна зоны электронов с левой стороны и потому не будут давать вклада в ток. В этом случае функция заполнения

 $f(E, \mu_R)$ может быть опущена из вышеприведенного выражения (5.13). Т.о., электроны с правой стороны не играют никакой роли вообще.

• При низкой температуре $T \ll T_F$, Фермиевская функция распределения может быть аппроксимирована ступенчатой функцией. Только электроны с энергией в интервале от E_L до E_R вносят вклад в ток. В этом случае результат упрощается:

$$I = \frac{2e}{h} \int_{\mu_R}^{\mu_L} T(E) dE \qquad (5.14)$$

• Если напряжение смещения очень мало (по сравнению с μ), то разность Фермиевских функций распределения может быть разложена в наинизшем приближении. Положим $\mu_L = \mu + (1/2)eV$ и $\mu_R = \mu - (1/2)eV$, где μ положение Фермиевского уровня в равновесии. Тогда

$$f(E,\mu_L) - f(E,\mu_R) \approx eV \frac{df(E,\mu)}{d\mu} = -eV \frac{df(E,\mu)}{dE} \quad (5.15)$$

Это справедливо, поскольку Фермиевская функция зависит только от разности $E - \mu$. Тогда

$$I = \frac{2e^2V}{h} \int_{E_L}^{\infty} \left(\frac{-df}{dE}\right) T(E) dE$$
 (5.16)

Это - результат в Омическом режиме, когда ток пропорционален приложенному напряжению. В этом режиме проводимость G = I/V дается выражением

$$G = \frac{2e^2}{h} \int_{E_L}^{\infty} \left(-\frac{df}{dE}\right) T(E) dE \qquad (5.17)$$

Сам по себе интеграл является безразмерным.

5.1. Формула Ландауэра (LANDAUER, 1957) 7

• При низких T, когда f-функция распределения является намного более резкой чем любые особенности в T(E), можно заменить $-df/dE = \delta(E - \mu)$ в проводимости. Тогда интеграл сводится к локальному значению при $E = \mu$ и мы получаем простой результат:

$$G = \frac{2e^2}{h}T(\mu) \tag{5.18}$$

Многоканальный случай

Рассмотрим систему с упругим рассеянием **S**, которая имеет идеальные подводящие провода ("подводы"). Вследствие квантования в поперечном направлении система имеет дискретные уровни энергии E_i и, соответственно им имеет N_{\perp} проводящих каналов на уровне Ферми E_F . Каждый канал характеризуется своим продольным волновым вектором k_i , так что

$$E_i + \frac{\hbar^2 k_i^2}{2m} = E_F, i = 1, \dots N_\perp.$$
 (5.19)

Чему равно N_{\perp} ?

Возьмем 1D канал шириной $W = \lambda_F/2$. В нем существует только оди уровень размерного квантования, который двукратно вырожден по спину $N_{\perp} = 2W/(\lambda/2) = 2$. Если канал в 2 раза шире, $W = \lambda_F$, то в нем поместятся два уровня размерного квантования, с $\lambda/2 = W$ и $\lambda = W$. Т.о., в 1D-канале число уровней $N_{\perp} = 2 \times 2W/\lambda$ (коэффициент 2 - вследствие спинового вырождения). Переходя к волновым числам получаем:

 $N_{\perp}^{(1D)} = 2Wk_F/\pi$ для 1D-поперечного сечения шириной W и, $N_{\perp}^{(2D)} = 2A/(\lambda_F/2)^2 = Ak_F^2/\pi^2$ для 2D-поперечного сечения площадью A,

в обоих случаях с учетом спинового вырождения.

Все подводящие каналы -

(1): с левой стороны, идущие направо, и

(2) с правой стороны, идущие налево -

подпитываются электронами из соответствующих резервуаров с химическими потенциалами μ_1 , μ_2 , соответственно.

Система **S** рассеивает следующим образом:

в приходящей слева волне j-тый канал имеет вероятности T_{ij} и R_{ij} для прохождения на правую сторону в *i*-тый канал и отражения на левую стороны в *i*-тый канал, соответственно. Аналогичные матрицы для волн приходящих с правой стороны обозначим прайм-индексами. В результате, $2N_{\perp} \times 2N_{\perp}$ элементов в матрице *S* описывает нашу систему **S**. Полная вероятность прохождения и отражения в *i*-тый канал равна:

$$T_i = \Sigma T_{ij}, \qquad R_i = \Sigma R_{ij}, \tag{5.20}$$

Для случая показанного на рисунке 5.3, проводимость сужения близка к $2(\frac{e^2}{h}) \times 1$.

Рассмотрим простой наглядный пример

Пусть имеется сужение (constriction) вдоль направления распространения x. Зафиксируем координату y. На рисунке 5.3 изображено изменение уровней энергии вдоль канала (по x) при фиксированной коордиате y: энергия каждой подзоны ε_N изменяется с положением точки x вдоль распространения электронной волны. Вдали от области сужения распространяется большое число состояний, однако по мере приближения к седловой точке волновые вектора большинства состояний становятся мнимыми и эти состояния встречают энергетический барьер $\varepsilon_N(x) > E$. Такие электронные состояния (моды 2, 3 и 4) могут частично проникнуть в барьер, однако, большая часть

8

Рис. 5.3: Схематическое изображение плавного седлообразного потенциала области сужения. (а) Для создания потенциального барьера используются два расщепленных затвора. (b) Энергии $\varepsilon_N(x)$ поперечных мод в зависимости от их положения x. Штриховая линия показывает положение уровня Ферми.

Рис. 5.4: Повторное, более реалистичное изображение уровней энергии

амплитуды волны отразится. Только моды 1 пройдут область сужения почти без отражения.

5.2 Квантовый точечный контакт (Quantum Point Contact, QPC)

QPC - это очень эффективный инструмент, который довольно плодотворно используется в разных областях мезоскопической физики. Например, Ю.В. Шарвин применял QPC для инжектирования электронов в нормальном (не сверхпровоящем) металле и изучения их баллистического распространения между такими двумя точечными источниками. QPC используется в спектроскопии сверхпроводников в микроконтактах S-N и S-N-S, в экспериментах по баллистической спектроскопии отношения е/т для квазичастиц в режиме дробного квантового эффекта Холла и для композитных фермионов. Здесь мы рассмотрим QPC как инструмент для изучения баллистического распространения электронных волн в квазиодномерной системе. В Si MOSFET электроны в 2D плоскости сосредоточены в области под металлическим затвором. Следовательно, квази-1D систему можно создать путем ограничения ширины канала с помощью затвора, а QPC - путем сужения 1D системы. В другом случае, актуальном для гетероструктур GaAs/AlGaAs, 1D канал можно создать нанесением двух расщепленных неперекрывающихся затворов, которые при подаче отрицательного напряжения будут выдавливать электроны, обедняя область канала под собой, как показано на рисунке 5.5. Во всех случа-

5.2. Квантовый точечный контакт (QUANTUM POINT CONTACT, QPC)11

Рис. 5.5: Геометрия точечного контакта (сужения) в гетероструктуре GaAs/AlGaAs: (a) вид сверху, (b) поперечное сечение.

ях, как мы увидим, проводимость равна

$$G = \sum_{1}^{N_{max}} \frac{2e^2}{h},$$
 (5.21)

где $N_{max} = k_F W / \pi$ (кратность спинового вырождения включена в формулу для G).

Квантованная проводимость в баллистическом режиме транспорта в GaAs/AlGaAs гетероструктуре была обнаружена в экспериментах ван Beeca (van Wees) в 1988г., где использовалась геометрия "точечного контакта"; впоследствие эффект квантования проводимости был подтвержден во многих других независимых экспериментах. Пример квантованной проводимости приведен на рисунке 5.6. Как видно, проводимость изменяется ступенчатым образом с амплитудой ступенек $2e^2/h \equiv e^2/(\pi\hbar)$ при изменении затворного напряжения, которое приводит к изменению эффективной ширины канала от 0 до 360нм.

Рис. 5.6: Квантованная проводимость точечного контакта в 2D электронном газе. Приведено из работы van Wees et al. PRL **60**, 848 (1988).

Итак, проводимость 1D системы равна

$$G = \frac{2e^2}{h}T,\tag{5.22}$$

где Т - коэффициент прохождения.

Рассмотрим простую модель квантового точечного контакта (QPC). Двумерный электронный газ (2DEG) сосредоточен в области $|y| \leq W(x)/2$ в плоскости x - y, путем создания бесконечно высокой потенциальной стенки при $y = \pm W(x)/2$. Поместим начало отсчета (точку x = 0) в место наибольшего сужения.

Тогда собственные состояния нашей модельной системы мо-

Рис. 5.7: Пример практического устройства с QPC создаваемым расщепленным затвором G: (a) пространственное изображение, (b) вид в плане.

гут быть найдены путем решения уравнения Шредингера

$$\frac{\hbar^2}{2m}\nabla^2\Psi(x,y) + V(x,y)\Psi = E\Psi(x,y)$$
(5.23)

с граничными условиями

$$\Psi(x, \pm W(x/2) = 0. \tag{5.24}$$

Решением этого уравнения является многомодовая волновая функция $\Psi_n(x, y)$, отвечающая эффективному потенциалу

$$V_n(x) = \frac{\hbar^2}{2m} \left(\frac{n\pi}{W(x)}\right)^2.$$
 (5.25)

Электроны в состояниях соответствующих каждой моде вносят независимый вклад в ток. Согласно формуле Ландауэра полная проводимость системы равна

$$G = \frac{2e^2}{h} \sum_{n=1}^{\infty} T_n \tag{5.26}$$

Для медленно изменяющегося потенциала W(x) зависимость T_n от E_F очевидна и является почти классической:

$$T_n \approx \begin{cases} 1 & E_F > V_n(0); \\ 0 & E_F < V_n(0), \end{cases}$$
 (5.27)

5.2.1 0.7-аномалия

На экспериментально наблюдаемых зависимостях G от затворного напряжения часто наблюдается загадочная особенность: первое плато проводимости возникает со значением несколько меньшим кванта проводимости, приблизительно $(0.7-0.6)e^2/h$. Происхождение этой т.н. "0.7-аномалии" до сих пор дискутируется. Одно из наиболее простых возможных объяснений состоит в следующем. Рассмотрим электрон движущийся в наинизшем состоянии вдоль канала по направлению к QPC. Когда он приближается к QPC, то его потенциальная энергия возрастает и, следовательно, кинетическая энергия уменьшается. Другими словами, электрон замедляется приближаясь к QPC. Электроны, движущиеся вдоль каналов с различными номерами должны двигаться независимо, однако это заключение справедливо только для невзаимодействующих электронов.

Рассмотренный электрон в канале наинизшего порядка остается вблизи точки максимума потенциала дольше чем другие электроны с более высокой энергией. Это создает эффективный отрицательный заряд вблизи QPC, который работает как Кулоновская блокада для других электронов. В результате, эффективная проводимость QPC возрастает медленнее чем в отсутствие Кулоновской блокады. Можно переформулировать это объяснение иными словами : амплитуда электронной волновой функции обратно пропорциональна квадрату скорости. Когда электрон замедляется, амплитуда его волновой функции растет вблизи потенциального максимума QPC, действуя как локализованный эффективный заряд, который отталкивает другие электроны.

5.3 Образовательный эксперимент: качающиеся проводники

J.L.Costa-Kraemer и соавторы, Science **342**, L1144-L1149 (1995). Простое экспериментальное устройство состояло из двух золотых проволочек (диаметром 0.1мм), изогнутых так, чтобы свободно касаться друг друга. Идея эксперимента состоит в следующем. Проводимость будет зависеть от силы, прижимающей две проволочки друг к другу. Проводимость измеряется при приложении фиксированного напряжения ~ 10мВ путем измерения протекающего тока. Сила, действующая на контакты, изменяется при постукивания держателя. Вибрация проволочек приводит к изменению проводимости от времени.

5.4 Аналогия в оптике

Рассмотрение в предыдущей секции никак не зависело от типа волн. Все что использовалось при рассмотрении - это просто изменение числа волновых мод, которые могут распространяться вдоль канала. Поэтому подобные явления можно наблюдать также с акустическими или со световыми волнами. Е.А.Montie и др.. [Nature, **350**, April 18 (1991)] использовал оптические волны инфракрасного диапазона $\lambda = 1.55 \mu$ м. На рисунке 5.9а изображена схема устройства, использован-

Рис. 5.8: Эксперимент с касающимися проволочками: (a) скрещенные проволочки, (b) результат эксперимента

ного в этом эксперименте. Свет может входить в объем детектора (типа "интегрирующая сфера") через щель. Интегрирующая сфера измеряет полную входящую мощность излучения. Ширина входной щели может изменяться с помощью пъезо-привода. Результат эксперименгта приведен на рисунке 5.9b. Каждая ступенька соответствует изменению ширины щели примерно на ~ 0.7μ м или половине длины волны, что соответствует изменению числа разрешенных (проходящих) мод на единицу.

Подытожим вышепроведенное рассмотрение, проведя мысленный эксперимент:

 Подадим на затвор создающий сужение (см. рисунки 5.4, 5.5 и 5.7) отрицательное напряжение смещения достаточно большой величины |V_q|, так, чтобы заштрихованные

Рис. 5.9: Оптический аналог эксперимента по квантованию проводимости

области под затвором были полностью обеднены и слились в одну область. В этом случае нет проводящих каналов между резервуарами R_1 и R_2 (в терминологии Ландаура) и, следовательно G = 0.

- 2. Начнем уменьшать $|V_g|$; когда мы сделаем $V_1(0) < E_F/e$, откроется первый проводящий канал, и вклад электронов моды **1** в проводимость *G* станет $\approx 2e^2/h$.
- 3. При дальнейшем уменьшении V_g проводимость станет изменяться ступенчатым образом:

$$G \approx \frac{2e^2N}{h},\tag{5.28}$$

где N определяется так, что $V_{N(0)} < E_F/e > V_{N+1}(0)$.

5.5 2D система в магнитном поле B_{\perp} : эффект Аронова-Бома (Aharonov-Bohm)

[Y. Aharonov, D. Bohm Phys.Rev. B **115**, 485(1959)]

Этот эффект является наиболее красивой демонстрацией волновой природы электронов, а также первичной роли векторпотенциала, а не магнитного поля.

Проведем мысленный эксперимент в 2D системе. Рассмотрим интерференцию электронных волн в точке D, приходящих в нее из точки S (через щель), как показано на рисунке 5.12. Рассмотрим два произвольных пути, **1** и **2**, между которыми помещен бесконечно длинный соленоид; а результате, две траектории охватывают магнитный поток Φ в соленоиде. В любой точке траекторий **1** и **2** магнитное поле равно нулю. Для электронной волны, распространяющейся по пути i волновая функция приобретает сдвиг фазы

$$\psi_i(r) = \exp[-i\theta_i(\mathbf{r})]\psi_i^0(\mathbf{r}), \qquad (5.29)$$

$$\theta_i(r) = \frac{2\pi}{\Phi_0} \int_S^D \mathbf{A} dr_i, \qquad (5.30)$$

где $\mathbf{A}(\mathbf{r})$ - вектор-потенциал, $\Phi_0 = hc/e$ - квант магнитного потока, ψ_i^0 - волновая функция в отсутствие вектор-потенциала \mathbf{A} , и dr_i - инкремент вдоль пути i.

Полная амплитуда электронной волны в точке D равна

$$\begin{aligned} |\psi_1(D) + \psi_2(D)| &= |\psi_1(D)|^2 + |\psi_2|^2 + 2\operatorname{Re}\psi_1^*(D)\psi_2(D) \approx \\ &\approx 2|\psi_1^0(D)|^2 \left[1 + \cos[\xi_E(D) + \theta_1 - \theta_2]\right] 5.31) \end{aligned}$$

5.5. 2D система в магнитном поле B_{\perp} : эффект Аронова-Бома (AHARONOV-BOHM)19

Рис. 5.10: Схематическое устройства эксперимента, демонстрирующего эффект Аронова-Бома (AB)

где разность фаз

$$\theta_1 - \theta_2 = \frac{2\pi}{\Phi_0} \left[\int_S^D \mathbf{A} dr_1 - \int_S^D \mathbf{A} dr_2 \right] = \frac{2\pi}{\Psi_0} \oint \mathbf{A}(s) ds = 2\pi \frac{\Phi}{\Phi_0} \tag{5.32}$$

Выше было сделано предположение о том, что $|\psi_1(D)|^2 \approx |\psi_2(D)|^2$, что является довольно разумным для распространяющихся плоских волн, и введено обозначение $\xi_E(D)$, так что $\psi_1^{0*}(D)\psi_2^0(D) = |\psi_1^0|^2 \exp[i\xi_E(D)].$

Полная амплитуда в точке D осциллирует как функция магнитного потока, охваченного двумя интерферирующими путями. Несмотря на то, что электроны распространяются в области, в которой магнитное поел равно нулю, на электроны действует вектор потенциал поля.

5.5.1 Другой вывод выражения для эффекта АВ

Из учебника квантовой механики известно, что вектор-потенциал модифицирует канонический импульс электрона с зарядом *e*, движущегося со скоростью *v*:

$$p = \hbar k = mv + (e/c)A \tag{5.33}$$

Изменение импульса вызывает изменение фазы волновой функции электрона, которое набегает при движении на некоторое расстояние. Т.о., даже если магнитное поле = 0 на всей траектории электрона, оно влияет на фазу волновой функции через вектор-потенциал. Были проведены прямые экспериментs по проверке AB-эффекта, в частности:

- для электронов в свободном пространстве [A. Tonomura et al. Phys.Rev. Lett. **48**, 1443 (1982); A. Tonomura et al. Phys.Rev.

Lett. 56, 792 (1986)]

- для куперовской пары в Джозефсоновсом контакте [Giaver].

Нас, однако, это интересует в применении к твердотельным и несверхпроводящим структурам. Полное изменение фазы, приобретенное электроном рапространяющимся вдоль некоторой траектории, описываемой переменной *l* сразу следует из канонического импульса

$$\Delta \phi = \int \overline{k} d\overline{l} = \frac{1}{\hbar} \int (m\overline{v} + \frac{e}{c}\overline{A}) d\overline{l} = \Delta \phi_v + \Delta \phi_A \qquad (5.34)$$

т.е. равно сумме вклада от скорости *v* частицы и вклада от вектор-потенциала *A*. Т.о., фазовый сдвиг, индуцируемый вектор-потенциалом дается выражением

$$\Delta\phi_A = \frac{e}{\hbar c} \int \overline{A} d\overline{l} \tag{5.35}$$

Следовательно, набег фазы у электрона, распространяющегося по замкнутой траектории равен

$$\Delta\phi_A = \frac{e}{\hbar c} \int \overline{A} d\overline{l} = \frac{e}{\hbar c} \oint (rot \overline{A} d\overline{S}) = \frac{e}{\hbar c} BS = 2\pi \frac{\Phi}{\Phi_0} \quad (5.36)$$

где $\Phi_0 = hc/e$ -квант потока. Итак, разность фаз равна 2π умноженному на вложенный в траекторию поток (в единицах кванта потока Φ_0). Окружаемый траекторией поток называется поток Аронова-Бома.

5.5.2 Эффекты Аронова-Бома (AB) и Альтшулера-Аронова-Спивака

Б. Альтшулер, А. Аронов, Б. Спивак, JETP Lett. **33**, 101 (1981) Ю.В. Шарвин, Д.Ю. Шарвин, Б. Альтшулер и др., Письма в ЖЭТФ. R.Webb, S.Washburn, et al. PRL. **54**, 2696 (1985). (не путать -Аронова из СПб с Aharonov!)

Наша цель - выяснить как эффект AB проявляется в твердотельных наноструктурах. В противоположность оригинальной геометрии AB, в твердотельных структурах магнитное поле обычно не сосредоточено только внутри кольца или замкнутой петли, оно также проникает в ту область где находятся электроны. В таком случае электроны испытывают не только действие вектор-потенциала, но также и действие магнитного поля. Несмотря на это, результирующий эффект также часто называется эффектом AB.

На рисунке 5.11 изображено кольцо малого поперечного сечения с двумя выводами напротив друг друга, присоединенными к кольцу в точках J_1 , J_2 для того чтобы можно было измерять проводимость. Внешнее магнитное поле индуцирует поток Φ через кольцо. Существуют траектории двух типов, показанные на панелях а) и б). На рисунке а) изображены траектории 1 и 2 длиной $L_1 \approx L_2$, проходящие из J_1 в J_2 по верхнему и нижнему полукольцу. На рис. б) изображены траектории 3 и 4, полностью обегающие всю петлю по и против часовой стрелки.

Рассмотрим вначале траектории типа **1** и **2**. Набегающая разность фаз AB описывается уравнением 5.11: половина фазовой задержки (т.е. отрицательного знака) набегает вдоль одного пути, и другая половина- фазовое опережение (положительного знака) - вдоль второго пути. Соответственно, полная разность фаз будет увеличиваться на 2π каждый раз когда один квант потока добавляется в кольцо. Т.о. период осцилляций AB происходящих от этих траекторий будет равен Φ_0 или (hc/e).

5.5. 2D система в магнитном поле B_{\perp} : эффект Аронова-Бома (AHARONOV-BOHM)23

Рис. 5.11: Картина интерференции электронных волн в проводящем кольце. Полукруговые траектории типа 1 и 2, показанные на панели (а), приводят к когерентному рассеянию вперед. Две полные круговые траектории типа 3 и 4, показанные на панели (b), приводят к когерентному рассеянию назад. (c) показывае векторное суммирование амплитуд волн. (d) - полная вероятность похождения $T = |b_1 + b_2|^2$ для полностью идентичных траекторий 1 и 2 (сплошная линия) и для не эквивалентых путей 1 и 2.

Мы уже видели ранее, основываясь на подходе Ландауэра, что проводимость системы определяется вероятностью прохождения электронных волн T. Т.о., для того чтобы найти проводимость кольца, надо оценить T - вероятность прохождения для волны с едиичной амплитудой. Пусть, для определенности, волна приходит со стороны левого вывода, расщепляется на две волны в месте соединения J_1 . Эти парциальные волны проходят по своим путям и рекомбинируют в месте J_2 . При этом надо учесть фазы, которые парциальные волны накопили проходя по своим путям. Наш план таков:

проведем сначала упрощенное рассмотрение итерференции, обсудим его и затем исправим одну ошибку, вытекающую из упрощенного рассмотрения.

Обозначим a_1 и a_2 - амплитуды парциальных волн прохоящих по путям 1 и 2 из расщепителя J_1 ; b_1 b_2 - амплитуды волн приходящих в точку J_2 для формирования выходной волны (рис.5.11). Для волны единичной амплитуды $|a_1 + a_2|^2 = 1$ и общий коэффициент T прохождения (вероятность) получается векторным суммированием парциальных волн b_1 и b_2 : $T = |b_1 + b_2|^2$ (см. рис. 5.11с, d). Т.о. мы можем записать

$$b_{j} = a_{j}F(L_{j})\exp(-i\Delta\phi_{j}) = a_{j}F(L_{j})\exp[-i(\Delta\phi_{v,j} + \Delta\phi_{A,j})], j = 1, 2,$$
(5.37)

где $\Delta \phi_{v,j}$, $\Delta \phi_{A,j}$ обозначает набираемое изменение фазы для парциальной волны вдоль пути j, в поле B = 0 и $B \neq 0$, соответственно. Префактор $F(L_j)$ выбран действительным и для начала, предположим что он равен 1. Для вероятости прохождения T получаем (см. геометрическую интерпретацию на 5.5. 2D система в магнитном поле B_{\perp} : эффект Аронова-Бома (AHARONOV-BOHM)25

рис. 5.11 с).

$$T = a_1^2 F^2(L_1) + a_2^2 F^2(L_2) + 2a_1 a_2 F(L_1) F(L_2) \cos(\Delta \phi_1 - \Delta \phi_2)$$
(5.38)

Для идеального абсолютно симметричного кольца оба пути **1** и **2**, также как и амплитуды парциальных волн a_j для двух путей ($a_1 = a_2 = 1/2\sqrt{2}$) равны. Симметрия кольца и равенство длин предполагает также одинаковость набегов фазы $\Delta \phi_{v,j}$. Если B = 0, то две волны придут в точку J_2 с одинаковым набегом фазы, т.е. $\cos(\Delta \phi_i - \Delta \phi_2) = 1$. Т.о. эта конструктивная интерференция дает максимум вероятности прохождения вперед T волны на выходе. Это означает то же самое что и максимум проводимости через кольцо J_1J_2 при $\Phi = 0$.

В предположении об отсутствии потерь при распространении по каждому полукольцу $F(L_1) = F(L_2) = 1$ получаем T = 1, т.е. единичная проводимость. Если поток не равен нулю, то вектор-потенциал сделает разность фаз ненулевой в уравнении 5.38, так что соз-член станет < 1 - см. Рис. 5.11 с. В частности, при $\Phi = \Phi_0/2$ косинус от $2\pi\Phi/\Phi_0$ обратится в -1, что приведет к падению проводимости до 0 и полному подавлению прохождения волны через кольцо. Т.о. проводимость (и сопротивление) будет осциллировать в зависимости от Φ с периодом задаваемым квантом потока через кольцо. Размах осцилляций зависит от отношения двух парциальных амплитуд b_1/b_2 .

В реальной структуре условие идельности - равенство фазовых набегов в двух плечах выполняется если длины полуколец равны с точностью много лучше длины волны электрона $\lambda_F \sim 5$ нм, поскольку набег фазы на 2π в каждом из плеч происходит при изменении длины пути на λ_F . Т.е. точность изготовления кольца должна быть лучше 0.1нм. Такое усло-

Рис. 5.12:

вие пока невозможно выполнить с существующей на сегодня технологией. Т.о. в реальном кольце при B = 0 два пути 1 и 2 не будут одинаковыми и разность их фаз по прибытии в точку J_2 не будет равна 0. Поскольку длина путей будет зависеть от случайных неточностей изготовления полуколец, то разность фаз двух волн по прибытию в точку J_2 будет случайной от $-\pi$ до $+\pi$.

Казалось бы полный коэффициент прохождения при B = 0 будет случайной величиной в интервале от максимума до минимума. Это однако справедливо лишь для нашей упрощенной картинки. На самом деле мы не учли, что волны прийдя в точку J_2 пройдут в вывод лишь частично, и частично отразятся от вывода и пойдут снова по другому плечу кольца.

Рассмотрим второй класс траекторий - 3 и 4 на рисунке

5.11. Во первых, каждая из парциальных волн обегает полное кольцо, возвращается назад и интерферирует сама с собой в точке J_1 . Эта интерференция приводит к эффективному рассеянию **назад**.

Во вторых, вследствие симметрии обращения времени, помимо волны распространяющейся по часовой стрелке имеется такая же волна, бегущая против часовой стрелки. Их интерференция при $\Phi = 0$ также дает эффективное рассеяние назад. При $B \neq 0$ фазы, набираемые двумя волнами **3** и **4** равны

$$\Delta \phi_3 = +2\pi \frac{\Phi}{\Phi_0}$$

$$\Delta \phi_4 = -2\pi \frac{\Phi}{\Phi_0} = -\Delta \phi_3.$$
(5.39)

Это означает, что разность фаз $\Delta \phi_3 - \Delta \phi_4$ в два раза больше чем между волнами **1** и **2**. Поэтому, при изменении магнитного поля осцилляции будут поисходить в два раза чаще, чем в эффекте AB. Этот эффект, наблюденный впервые Ю.В. Шарвиным и Д.Ю. Шарвиным называется осцилляциями Альтшулера-Аронова-Спивака (AAC).

Рис. 5.13: Золотое кольцо в эксперименте (R.Webb). Диаметр кольца 825нм, ширина 40нм. (а) схема устройства, (b) результат измерений - осцилляции проводимости и (c) Фурье-спектр осцилляций.