Глава 20

Микроскопическая теория е-е взаимодействия. Часть 5

Оглавление

20	0 Микроскопическая теория е-е взаимодействия.			
	Час	łасть 5		
		20.0.1	Поправка Хаббарда	4
	20.1	.1 Функция отклика ток-ток		
		20.1.1	Гамильтониан возмущения	7
		20.1.2	Формула Кубо-Гринвуда	8
		20.1.3	Более строгое рассмотрение	10
		20.1.4	Калибровочная инвариантность	13
		20.1.5	Электропроводность	15
		20.1.6	Вывод формулы Друде	17
		20.1.7	Эффекты взаимодействия в Холловской	
			проводимости в слабом перпендикулярном	
			поле	19
		20.1.8	Температурная зависимость времени упру-	
			гой релаксации в 2D электронных системах	20
	20.2	20.2 Измерения перенормировки спиновой восприим-		
		ЧИВОСТИ		30
		20.2.1	Определение F_0^a из биений квантовых ос-	
			цилляций	31
	20.3	А что	остается за бортом?	36
		20.3.1	Приложение 1. Задачи	38

В этой Лекции вначале излагаются сведения дополняющие Лекции 20.2 – 20.4 по теории экранирования и линейного отклика в различных приближениях. Затем описываются проявления эффектов взаимодействия в низкотемпературном транспорте заряда и термодинамике низкоразмерных электронных систем

20.0.1 Поправка Хаббарда

При высоких плотностях электронной системы (малые r_s) основной вклад в корреляционную энергию обусловлен процессами с малыми передачами импульса. Для этих процессов результаты, полученные в приближении RPA, должны быть довольно точными, поскольку предположение о динамическом экранировании квазичастиц, на характерных расстояниях много больше обратного фермиевского импульса, выполняется хорошо. Однако по мере увеличения r_s становятся заметными процессы передачи импульса порядка фермиевского. Ясно. что потенциал на расстояниях, сравнимых с межчастичным будет экранироваться плохо. Приближенное выражение, описывающее процесс ухудшения экранирования при больших передачах импульса, было предложено Хаббардом:

$$\chi_{\rm scr}^{\rm H}(\mathbf{q},\omega) = \chi^0(\mathbf{q},\omega) \left[1 + G(q) \frac{4\pi e^2}{q^2 \chi^0(\mathbf{q},\omega)}\right]^{-1}$$
(20.1)

Сравним это с формулами (20.30) и (20.29) из Лекции 20.4 (повторю их еще раз)

$$\chi_{\rm scr}(\mathbf{q},\omega) = \epsilon(\mathbf{q},\omega)\chi(\mathbf{q},\omega),$$
 (20.2)

$$\epsilon(\mathbf{q},\omega) = 1 - \frac{4\pi e^2}{q^2} \chi^{\text{scr}}(\mathbf{q},\omega), \qquad (20.3)$$

где $\chi_{\rm scr}$ - функция реакции плотность-плотность на экранированном поле и $\chi^{\rm H}_{\rm scr}(\mathbf{q},\omega) = \chi^0(\mathbf{q},\omega).$

Видим, что в (20.1) введена функция $G(\mathbf{q})$, описывающая так называемые поправки на локальное поле (local field corrections, LFC). Хаббардом был предложен следующий вид этой функции для 3D электронных систем:

$$G(q) = \frac{1}{2} \frac{q^2}{(q^2 + p_F^2)}.$$
(20.4)

Она имеет правильные асимптотики при $q \ll p_F$ и $q \gg p_F$. С помощью (20.1) и (20.3) легко вычислить исправленную функцию реакции плотность-плотность

$$\chi^{\mathrm{H}}(\mathbf{q},\omega) = \frac{\chi^{0}(\mathbf{q},\omega)}{\left[1 - G(q)\frac{4\pi e^{2}}{q^{2}}\chi^{0}(\mathbf{q},\omega)\right]}.$$
 (20.5)

После Хаббарда предлагались и другие подобные поправки на локальное поле. Считается, что использование такого рода поправок позволяет приблизиться к $r_s = 1$ и даже продвинуться в область $r_s \ge 1$. Для 2D систем Хаббардовская поправка имеет вид:

$$G(q) = \frac{1}{2g_v} \frac{q}{\sqrt{q^2 + p_F^2}},$$
(20.6)

где g_v –число эквивалентных долин в спектре.

20.1 Функция отклика ток-ток

Ранее мы рассматривали фугкцию отклика плотность-плотность и находиди с ее помощью энергию основного состояния. Теперь мы перейдем к другому очень важному применению формализма: вычислению отклика по току и плотности однородной электронной жидкости, подвергнутой воздействию векторного потенциала $\vec{A}(\vec{r},t)$. Из классической электродинамики хорошо известно, что электромагнитное поле может быть представлено в терминах скалярного потенциала ϕ и векторного потенциала \vec{A} в соответствии с формулами:

$$\vec{E}(\vec{r},t) = -\vec{\nabla}\phi(\vec{r},t) - \frac{1}{c}\frac{\partial\vec{A}(\vec{r},t)}{\partial t}$$
$$\vec{B}(\vec{r},t) = \vec{\nabla}\times\vec{A}(\vec{r},t)$$
(20.7)

Эти формулы инвариантны относительно калибровочного преобразования

$$\begin{aligned} \phi(\vec{r},t) &\to \phi(\vec{r},t) - \frac{1}{c} \frac{\partial \vec{\Lambda}(\vec{r},t)}{\partial t} \\ \vec{A}(\vec{r},t) &\to \vec{A}(\vec{r},t) + \vec{\nabla} \vec{\Lambda}(\vec{r},t), \end{aligned} \tag{20.8}$$

где $\vec{\Lambda}(\vec{r},t)$ - дифференцируемая, но произвольная функция от \vec{r} и t. Часто можно воспользоваться свободой выбора и сопоставить данную проблему с эквивалентной, которая легче поддается решению или предлагает другие идеи. Например, скалярный потенциал $V(\vec{r},t) = e\phi(\vec{r},t)$ всегда может быть устранен соответствующим выбором $\Lambda(\vec{r},t)$. Это преобразование приводит к появлению векторного потенциала

$$\vec{A}(\vec{r},t) = -\frac{c}{e} \int_0^t \vec{\nabla} V(\vec{r},t) dt'$$
(20.9)

Таким образом, задача вычисления отклика системы на скалярный потенциал преобразуется в задачу вычисления отклика той же системы на особый тип векторного потенциала, а именно на тот, который может быть записан через градиент скалярной функции. Такое векторное поле называется продольным, потому что его преобразование Фурье, $\vec{A}(\vec{q})$, параллельно \vec{q} для каждого \vec{q} . Существуют также поперечные векторные потенциалы (например, те, которые используются для описания статического магнитного поля), преобразование Фурье которого перпендикулярно \vec{q} для каждого \vec{q} . Наиболее общее векторное поле не является ни продольным, ни поперечным, но может быть записано как суперпозиция двух видов полей. Здесь мы рассматриваем реакцию электронной жидкости на такое общее поле.

20.1.1 Гамильтониан возмущения

Отклик ферми систем на однородное электрическое поле мы рассматривали ранее неоднократно и в различных приближениях. Здесь мы несколько изменим подход к отклику на однородное статическое поле, а именно, будем рассматривать статическое поле, как предел переменного поля при частоте, стремящейся в нуль. С этой целью прежде всего перепишем гамильтониан возмущения, причем сделаем жто в два приема - вначале на качественном уровне, затем более строго. Итак, считаем, что электромагнитное поле имеет вихревое происхождение и может быть описано зависящим от времени вектор – потенциалом \vec{A} . При наличии возмущения гамильтониан системы взаимодействующих частиц выглядит следующим образом:

$$H = \frac{1}{2m} \sum_{k} (\vec{p}_k - \frac{e}{c} \vec{A}_k)^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{r_{ij}}$$
(20.10)

Разделим гамильтониан на 2 члена: $H = H_0 + V$, где V- потенциал взаимодействия:

$$V = -\frac{1}{2} \sum_{k} \frac{e}{mc} (\vec{p}_{k} \vec{A}_{k} + \vec{A}_{k} \vec{p}_{k}) + \sum_{k} \frac{e^{2}}{2mc^{2}} \vec{A}_{k}^{2}$$
(20.11)

Напомним, что для произвольного оператора f справедливо:

$$(\hat{\vec{p}}\hat{f} - \hat{f}\hat{\vec{p}})\phi = -i\hbar(\nabla\hat{f}\phi - \hat{f}\nabla\phi) = -i\hbar\phi\nabla\hat{f} \qquad (20.12)$$

В частности, $(\vec{p}\vec{A}-\vec{A}\vec{p})=-i\hbar\operatorname{div}\vec{A}$. Теперь выберем условие калибровки

$$\operatorname{div}\vec{A} = 0; \tag{20.13}$$

тогда

$$V = -\sum_{k} \frac{e}{mc} \bar{A}_{k} \vec{p}_{k} + \sum_{k} \frac{e^{2}}{2mc^{2}} \vec{A}_{k}^{2}$$
(20.14)

Второй член сразу отбросим, поскольку нас интересует только линейный отклик. В однородном гармоническом электрическом поле $\vec{E} = -(1/c)\partial \vec{A}/\partial t$ и

$$|A_x| = cE_x/\omega, \qquad (20.15)$$

а гамильтониан возмущения приобретает вид

$$\hat{V} = \sum_{k} \frac{e\hbar}{m\omega} E_x \frac{\partial}{\partial x_k}$$
(20.16)

где индекс k, как и всюду ранее нумерует частицы системы.

20.1.2 Формула Кубо-Гринвуда

Перейдем теперь к вычислению проводимости на частоте ω . Вначале сделаем это на полукачественном уровнея. а затем более строго. Определим проводимость на частоте ω через среднюю мощность потерь на частоте ω в единице объема системы. Мощность потерь равна:

$$\frac{1}{2}E_x^2\sigma(\omega) \tag{20.17}$$

Вычислим эту же величину рассматривая переходы частиц системы в возбужденные состояния. Вероятность перехода из состояния с энергией ε в состояние с энергией $\varepsilon + \hbar \omega$, в соответствии с золотым правилом Ферми, равна:

$$W = \frac{2\pi}{\hbar} E_x^2 \frac{(e\hbar)^2}{(m\omega)^2} |D|^2 N(\varepsilon + \hbar\omega)$$
(20.18)

где $N(\varepsilon + \hbar \omega)$ –плотность конечных состояний, а D, согласно предыдущему параграфу

$$D = \int d^3x \psi_{\varepsilon'}^* \partial \psi_{\varepsilon} / \partial x \qquad (20.19)$$

Теперь вычислим потери энергии: Нужно учесть прямые и обратные переходы, а также число электронов, совершающих переходы, и число свободных мест. Приравнивая потери энергии, вычисленные двумя способами, получим:

$$\sigma(\omega) = \frac{4\pi e^2 \hbar}{m^2 \omega^2} \int d\varepsilon \left\{ n^0(\varepsilon) [1 - n^0(\varepsilon + \hbar\omega)] - n^0(\varepsilon + \hbar\omega) [1 - n^0(\varepsilon)] \right\} \times D^2_{aver} \quad N(\varepsilon) N(\varepsilon + \hbar\omega),$$
(20.20)

В фигурных скобках перекрестные произведения исчезают и остается $n^0(\varepsilon) - n^0(\varepsilon + \hbar\omega) = \hbar\omega(-\partial n^0/\partial \varepsilon)$. Следовательно,

$$\sigma(\omega) = -\int \sigma(\varepsilon, \omega) \frac{\partial n^0}{\partial \varepsilon}$$

$$\sigma(\varepsilon, \omega) = \frac{4\pi e^2 \hbar^2}{m^2 \omega^2} D_{aver}^2 N(\varepsilon) N(\varepsilon + \hbar \omega) \qquad (20.21)$$

Выражения (20.21) известны как формула Кубо- Гринвуда. Мы видим, что если для электронов или квазичастиц можно ввести проводимость, зависящую от энергии, то полная проводимость будет суммой таких, зависящих от энергии проводимостей вблизи уровня Ферми.

Случай T = 0

Функция распределения в этом случае имеет вид ступени. Разность функций распределения в (20.20) отлична от нуля на интервале $\hbar\omega$. Поэтому

$$\sigma(\omega) = \frac{4\pi e^2 \hbar^2}{m^2 \omega^2} \int_{\varepsilon_F - \hbar\omega}^{\varepsilon_F} D_{aver}^2 N(\varepsilon) N(\varepsilon + \hbar\omega) d\varepsilon \qquad (20.22)$$

Устремляя частоту к нулю, получим проводимость на постоянном токе

$$\sigma(0) = \frac{4\pi e^2 \hbar^3}{m^2} D_{aver}^2 N^2(\varepsilon_F)$$
(20.23)

Если электрон локализован, то $D_{aver}^2 = 0$, поскольку перекрытие двух волновых функций у локализованных электронов с одной энергией отсутствует.

20.1.3 Более строгое рассмотрение

Возмущенный Гамильтониан

$$\hat{H}_{\vec{A}}(t) = \frac{1}{2m} \sum_{i} \left(\hat{p}_{i} + \frac{e}{c} \vec{A}(\hat{\vec{r}}_{i}, t) \right)^{2} + U(\vec{r}_{1}, ...\vec{r}_{N}), \qquad (20.24)$$

где U - функция полной потенциальной энергии. После линеаризации относительно \vec{A} это выражение принимает стандартную форму

$$\hat{H}_{\vec{A}}(t) = \hat{H} + \frac{e}{c} \int \hat{\vec{j}}_{p}(\vec{r}) \cdot \vec{A}(\hat{\vec{r}}, t) d\bar{r}, \qquad (20.25)$$

10

где

$$\hat{\vec{j}}_{p}(\vec{r}) = \frac{1}{2m} \sum_{i} \left[\hat{\vec{p}}_{i} \delta(\hat{\vec{r}} - \hat{\vec{r}}_{i}) + \delta(\hat{\vec{r}} - \hat{\vec{r}}_{i}) \hat{\vec{p}}_{i} \right]$$
(20.26)

есть парамагнитная составляющая плотности тока, определенная в Приложении 2. Напомним, что именно физический ток \vec{j} (как определено, например, в уравнении (A2.14)), а не \vec{j}_p , удовлетворяет уравнению непрерывности и инвариантен относительно калибровочных преобразований.

Что же касается \vec{j}_p , то он не обладает ни одним из этих замечательных свойств: его основное преимущество заключается в том, что он не зависит от \vec{A} и, следовательно, является естественной "внутренней" величиной, связанной с \vec{A} . Именно по этой причине мы определяем линейную функцию отклика $\chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\omega)$ как линейную функцию отклика плотности парамагнитного тока на внешний векторный потенциал, т.е.

$$\langle \hat{j}_{p\alpha} \rangle(\vec{q},\omega) = \frac{e}{c} \sum_{\beta} \sum_{\vec{q}'} \chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\vec{q}',\omega) A_{\beta}(\vec{q}',\omega), \qquad (20.27)$$

где α и β - обозначения картезианских компонент векторов \vec{j}_p и \vec{A} . Здесь $\chi_{j_{p\alpha}j_{p\beta}}$ - это преобразование Фурье функции отклика

$$\chi_{j_{p\alpha}j_{p\beta}}(\vec{r},\vec{r}',t) = -\frac{i}{\hbar}\Theta(t)\langle [\hat{j}_{p\alpha}(\vec{r},t),\hat{j}_{p\beta}(\vec{r}')]\rangle_0, \qquad (20.28)$$

определенной также как в уравнении (3.127). Затем отклик физического тока получается путем добавления к уравнению (20.27) ожидаемого значения диамагнитного тока (см. уравнение -расписать его в терминах вторичного квантования, которое, очевидно, уже линейно по возмущению:

$$\chi^{J}_{\alpha\beta}(\vec{q},\vec{q}',\omega) = \frac{n}{m}\delta_{\alpha\beta} + \chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\vec{q}',\omega)$$
(20.29)

Вообще, имеется общее соотношение доказать), которое нам понадобится для вычисления проводимости

$$\chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\vec{q}',\omega) = \frac{1}{L^d} \chi_{j_{p\vec{q}\alpha}j_{\vec{p}-\vec{q}\beta}}(\omega)$$
(20.30)

Особое значение имеет случай трансляционно-инвариантных (однородных) систем или даже неупорядоченных, но "самоусредняющихся" систем. В таких случаях парамагнитная функция отклика по току, так же как и полная, становится функцией единственного волнового вектора, т.е. мы имеем

$$\chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\vec{q}',\omega) = \chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\omega)\delta_{\vec{q},\vec{q}'}$$
(20.31)

И

$$\chi^{J}_{\alpha\beta}(\vec{q},\omega) = \frac{n}{m} \delta_{\alpha\beta} + \chi_{j_{p\alpha}j_{p\beta}}(\vec{q},\omega)$$
(20.32)

Некоторые интересные свойства функции отклика по току электронной жидкости сразу становятся очевидными из соображений симметрии. Прежде всего, однородность и изотропность системы гарантируют, что тензор $\chi^{J}_{\alpha\beta}(\vec{q},\omega)$ может быть разложен на продольную и поперечную составляющие относительно направления \vec{q} , каждая из которых зависит только от величины \vec{q} . Другими словами, ток, индуцируемый чисто продольным векторным потенциалом, является чисто продольным, а ток, индуцируемый чисто поперечным векторным потенциалом, является чисто поперечным. Более формально можно написать

$$\chi^{J}_{\alpha\beta}(\vec{q},\omega) = \chi_{L}(q,\omega) \frac{q_{\alpha}q_{\beta}}{q^{2}} \left(\delta_{\alpha\beta} - \frac{q_{\alpha}q_{\beta}}{q^{2}}\right), \qquad (20.33)$$

где χ_L и χ_T – функции отклика ток-ток в продольном и поперечном каналах соответственно, т.е.,

$$\vec{j}_{L(T)}(q,\omega) = \frac{e}{c} \chi_{L(T)}(q,\omega) \vec{A}_{L(T)}(q,\omega)$$
(20.34)

где $\vec{j}_{L(T)}$ и $\vec{A}_{L(T)}$ - есть продольная (поперечная) компоненты плотности тока и вектор-потенциала. Обратите внимание, что мы опускаем верхний индекс J в продольном и поперечном компонентах текущей функции отклика, которые, таким образом, обозначаются просто χ_L и χ_T .

Из приведенного выше обсуждения должно быть очевидно, что задача вычисления отклика тока на векторный потенциал включает в себя, как частный случай, задачу вычисления отклика плотности на скалярный потенциал. Формулировка векторного потенциала, однако, является гораздо более общей, поскольку она также включает расчет отклика на поперечные электромагнитные волны и, в статическом пределе, отклика орбитальной намагниченности на магнитное поле.

20.1.4 Калибровочная инвариантность

Некоторые свойства функции отклика ток-ток непосредственно вытекают из требований калибровочной инвариантности. Согласно уравнению (20.9) продольный векторный потенциал $\vec{A}_L(q,\omega) = [c\vec{q}/(e\omega)]V(q,\omega)$ должен быть эквивалентен по своим физическим эффектам скалярному потенциалу $V(q,\omega)$. Первый индуцирует продольную плотность тока $j_L(q,\omega) =$ $(q/\omega)\chi_L(q,\omega)V(q,\omega)$ и, следовательно (через уравнение непрерывности) плотность $n_1(q,\omega) = (q/\omega)j_L(q,\omega) = (q^2/\omega^2)\chi_L(q,\omega)V(q,\omega)$. Эта цепочка преобразований приводит нас к выводу, что

$$\chi_{nn}(q,\omega) = \frac{q^2}{\omega^2} \chi_L(q,\omega)$$
(20.35)

В частности, для $\omega = 0$ отсюда получаем

$$\chi_L(q,0) = 0 \tag{20.36}$$

для любого конечного $q \neq 0$. Это, конечно, не что иное, как знакомое утверждение о том, что чисто продольный и статический векторный потенциал не может индуцировать никакого физического тока. Что касается функции поперечного отклика по току, то при отсутствии дальнего порядка ожидается

$$\lim_{q \to 0} \chi_T(q, 0) = \lim_{q \to 0} \chi_L(q, 0) = 0$$
 (20.37)

Этот результат известен как правило диамагнитной суммы, и некоторые из его следствий будут обсуждаться далее.

Физическая задача, в которой необходим отклик поперечного тока, заключается в вычислении орбитальной намагниченности, индуцируемой в электронной жидкости статическим синусоидальным магнитным полем. Это нетрудно сделать, но мы не будем углубляться с выкладками в сторону от нашего основного русла. Приведем лишь конечный результат:

$$\chi_{orb} = -\frac{e^2}{c^2} \lim_{q \to 0} \frac{\chi_T(q,0)}{q^2}$$
(20.38)

Это орбитальная магнитная восприимчивость. Таким образом, мы видим, что необходимым условием существования конечной орбитальной магнитной восприимчивости является то, что $\chi_T(q,0)$ должно обращаться в нуль как q^2 при $q \to 0$, удовлетворяя, т. о., правилу диамагнитной суммы ур. (20.37). Это условие выполняется в обычных электронных системах, но не выполняется в сверхпроводниках вследствие существования дальнего порядка и вытекающей из этого особенности функций отклика по току при $q \to 0$. Т.о., сверхпроводящие системы обладают бесконечной орбитальной восприимчивостью, которая проявляется в идеальном экранировании приложенного магнитного поля (эффект Мейснера).

20.1.5 Электропроводность

Теперь рассмотрим реакцию электронной системы на *однородное* электрическое поле, $\vec{E}(t)$, которая может быть представлена как производная по времени однородного векторного потенциала $A(t) = -c \int_0^t E(t') dt'$. Преобразование Фурье от $\vec{A}(t)$ равно

$$\vec{A}(\omega) = -(ic\omega)\vec{E}(\omega)$$

. Согласно уравнению (20.34) и (20.32) компонента q = 0индуцированного тока заряда задается формулой

$$-ej_{\alpha}(0,\omega) = \frac{ie^2}{\omega} \sum_{\beta} \chi^J_{\alpha\beta}(0,0,\omega) E_{\beta}(\omega)$$
(20.39)

где обозначения отражают тот факт, что в неоднородной системе $\chi^J_{\alpha\beta} \chi_{j_{p\alpha}j_{p\beta}}$ являются функциями двух волновых векторов и одной частоты. Коэффициент, умножающий на $E_{\beta}(\omega)$ в приведенных выше уравнениях, является макроскопической электропроводностью

$$\sigma_{\alpha\beta}(\omega) = \frac{ie^2}{\omega} \chi^J_{\alpha\beta}(0,0,\omega) = \frac{ie^2}{\omega} \left[\frac{n}{m} \delta_{\alpha\beta} + \chi_{j_{p\alpha}j_{p\beta}}(0,0,\omega) \right].$$
(20.40)

Это соотношение называют формулой Кубо для электропроводности. Кроме того, с учетом уравнения (20.30) в пределе длины волны мы имеем

$$\chi_{j_{p\alpha}j_{p\beta}}(0,0.\omega) = \frac{1}{m^2 L^d} \chi_{P_\alpha P_\beta}(\omega) \qquad (20.41)$$

где \hat{P}_{α} - одна из компонент полного импульса. Согласно формуле Кубо это можно переписать как

$$\sigma_{\alpha\beta}(\omega) = \frac{ine^2}{m\omega} \left[\delta_{\alpha\beta} + \frac{\chi_{P_{\alpha}P_{\beta}}(\omega)}{nmL^d} \right]$$
(20.42)

Обсудим теперь низкочастотное поведение $\sigma_{\alpha\beta}(\omega)$. Исходя из того факта, что однородный и статичный векторный потенциал может быть удален с помощью калибровочного преобразования, можно было бы ожидать что $\chi^J_{\alpha\beta}(0,0,\omega)$ обращается в нуль при $\omega \to 0$. На самом деле это нетривиальное ожидание, потому что волновые векторы стремятся к нулю раньше чем частота, когда векторный потенциал все еще зависит от времени. Основная проблема заключается в том, может ли порядок пределов $q \to 0$ и $\omega \to 0$ быть изменен местами или нет. Мы знаем, что такая замена в порядке пределов недопустима в случае строго однородной электронной жидкости или в случае сверхпроводников, которые демонстрируют дальний порядок. В любом случае, решающий вопрос заключается в том, стремится $\chi^J_{\alpha\beta}(0,0,\omega)$ к нулю быстрее, чем ω , как ω , или медленнее, чем ω – последний случай включает возможность того, что он может вообще не исчезать. В соответствии с этими тремя возможностями мы приходим к следующей классификации возможных типов электрического отклика электронной системы:

• Изоляторы.

В этом случае $\chi^{J}_{\alpha\beta}(0,0,\omega)$ стремится к нулю быстрее, чем ω , что приводит к исчезающей проводимости при $\omega \to 0$. Такая ситуация обычно возникает, когда система имеет разрыв в спектре возбуждения, так что функция отклика по току является чисто реальной при малых ω . Простейшее аналитическое поведение $\Re \mathfrak{e} \chi^{J}_{\alpha\beta}(0,0,\omega)$ которое согласуется с симметрией действительной части функции отклика, является пропорциональность ω^2 , что подразумевает $\sigma_{\alpha\beta} \propto i\omega$ для $\omega \to 0$.

• Обычные проводники.

16

В этих системах из-за наличия возбуждений с низкой энергией мнимая часть функции отклика по току остается конечной по мере того, как частота стремится к нулю. Простейшим аналитическим поведением $\Im \chi^{J}_{\alpha\beta}(0,0,\omega)$, которое согласуется с требованиями симметрии на низкой частоте, является линейность по ω . Это приводит к конечной реальной проводимости при нулевой частоте.

• Сверхпроводники.

В сверхпроводниках предположение о регулярности функции отклика по току нарушается, и больше не верно, что $\chi^J_{\alpha\beta}(0,0,\omega)$ стремится к нулю при $\omega \to 0$. В простейшем случае второй член в квадратной скобке уравнения (20.39) обращается в нуль (как это было бы в идеально однородной электронной жидкости) из-за особой жесткости волновой функции основного состояния. В результате проводимость является чисто мнимой (диссипация отсутствует) и расходится как ω^{-1} .

20.1.6 Вывод формулы Друде

Вооружившись изложенной теорией отклика ток-ток найдем теперь проводимость на нулевой частоте. Иначе говоря, покажем, как работает классическая формула для проводимости Друде $\sigma = ne^2 \tau/m$ (см. Ашкрофт и Мермин). Выведем ее из функции отклика по току, т.е. из Ур. (20.42). Вывод довольно тонкий и дает нам явное микроскопическое выражение для $1/\tau$ до второго порядка в электрон-примесном взаимодействии. Мы начнем с введения модельного гамильтониана

$$\hat{H} = \hat{H}_0 + \frac{1}{L^d} \sum_{\vec{k}} U(\vec{k}) n_{\vec{k}}^{(i)} n_{-\vec{k}}$$
(20.43)

где $U(\vec{k})$ есть фурье-преобразование электрон-примесного потенциала (т.е. потенциала рассеяния) и

$$n_{\vec{k}}^{(i)} = \sum_{i} e^{-i\vec{k}\cdot\vec{R}_{i}}$$

представляет собой преобразование Фурье плотности примесей, где $\vec{R_i}$ обозначает положение примесей. Предполагая, что существует N_i случайно распределенных примесей, мы имеем

$$|n_{\vec{k}}^{(i)}|^2 = N_i$$

для всех \vec{k} , с незначительной погрешностью в термодинамическом пределе.

В отсутствие примесей \hat{P}_x является константой движения, поэтому $\chi_{P_x Px} = 0$, и $\sigma(\omega)$ сводится к значению для свободных электронов $ine^2/(m\omega)$. Далее, заметим, что мы можем, без потери общности, представить проводимость в виде

$$\sigma(\omega) = \frac{ine^2/(m)}{\omega + \frac{i}{\tau(\omega)}}$$
(20.44)

где $1/\tau(\omega)$ является комплексной функцией частоты, которая описывае влияние примесей. Формально полагая, что этот эффект мал, можно записать асимптотическое разложение в ведущем порядке по беспорядку, следующим образом:

$$\sigma(\omega) = \frac{ine^2}{m\omega} + \frac{ne^2}{m\omega^2} \frac{1}{\tau(\omega)} + \dots$$
 (20.45)

Сравнивая это выражение с (20.42) находим

$$\frac{1}{\tau(\omega)} = \frac{i\omega}{nmL^d} \chi_{P_x P_x}(\omega) \tag{20.46}$$

Приближенный характер этого результата заключается в том, что расзложение Ур.(20.45) не сходиться для $\omega \ll \tau^{-1}(\omega)$ и, следовательно, разложение (20.46) вернао только для частот больше чем $\tau^{-1}(\omega)$. Игнорирование этого ограничения является ключевым, и единственным приближением, необходимым для вывода классической проводимости. Обоснование этой процедуры основано на том, что $1/\tau(\omega)$, рассчитанное по формуле (20.46), практически не зависит от ω на масштабе самой $1/\tau(0)$.

Если продолжать в таком духе дальше с использованием формул реакции отклика ток-ток, то после длинных вычисление получается

$$\frac{1}{\tau(0)} = \frac{2\pi}{\hbar} \frac{n_i}{L^d} \sum_{\vec{q}} (1 - \cos\theta) |U(k_F \hat{n} - \vec{q})|^2 \delta(\varepsilon_{\vec{q}\sigma} - \varepsilon_F) \quad (20.47)$$

где θ - угол между \vec{q} и любым произвольным направлением \vec{n} .

20.1.7 Эффекты взаимодействия в Холловской проводимости в слабом перпендикулярном поле

Согласно теории [3], электрон-электронное взаимодействие во всех порядках по теории возмущений не влияет на холловскую проводимость σ_{xy} 2D систем

$$\sigma = \frac{ne\mu}{1+\mu^2 B_{\perp}^2} \begin{pmatrix} 1 & \mu B_{\perp} \\ -\mu B_{\perp} & 1 \end{pmatrix} + \begin{pmatrix} \Delta \sigma_{ee} & 0 \\ 0 & \Delta \sigma_{ee} \end{pmatrix}.$$
 (20.48)

Если учитывать только поправку за счет е-е взаимодействия и игнорировать другие поправкт (интерференция и пр.), то получаем знаменитое соотношение Альтшулера [3] между поправками к проводимости и к холловскому сопротивлдению:

Оглавление

$$\frac{\Delta \rho_{xy}}{\rho_{xy}} = 2 \frac{\Delta \rho_{xx}^{(ee)}}{\rho_{xx}} = -2 \frac{\Delta \sigma_{ee}}{\sigma_D}$$
(20.49)

Это соотношение позволяет выделять многочастичные поправки к проводимости из измеряемых зависимостей $\delta \rho_{xy}(T)$, так как в диагональныю компоненту вносят вклад только эффекты е-е взаимодействия.

20.1.8 Температурная зависимость времени упругой релаксации в 2D электронных системах

В невзаимодействующей системе электронов в пределе $T \to 0$ проводимость и время релаксации импульса стремятся к константе $\tau = const$, $\sigma = Const$. В учебниках часто встречается утверждение о том что в ферми-жидкости $\tau^{-1} \propto T^2$ и это называется "ферми-жидкостная зависимость". Однако, нужно помнить, что это справедливо только при учете процессов переброса. В 2D системах поверхности Ферми малы по сравнению с зоной Бориллюэна и процессов переброса, как правило нет.

Ранее в Лекциях первой части курса мы рассматривали два режима транспорта - диффузионный $l_{tr} \ll L$ и баллистический $l_{tr} \gg L$, где L- характерный размер системы, $l_{tr} = l_e = v_F \tau_e$ - длина релаксации импульса или упругая длина, а τ_e время релаксации импульса иди время упругого рассеяния. В первом случае мы также рассматривали квантовую поправку к проводимости Друде за счет эффектов интерференции - одночастичный квантовый эффект, связанный с тем, что время неупругого рассеяния (т.е. релаксаwии энергии $\tau_{inelastic} \gg \tau_e$. При этом условии время сбоя фазы $\tau_{\phi} \approx \tau_{inelastic} \gg \tau$ и эффекты интерференции дают отрицательную поправку WL к

20

проводимости (типа "рассеяния назад" в узком диапазоне углов), которая в 2D системе:

$$\Delta \sigma_{\rm WL} = \frac{e^2}{2\pi^2 \hbar} \ln\left(\frac{\tau}{\tau_{\phi}}\right)$$

Мы упоминали также, что учет взаимодействия может существенно изменить этот результат. Ниже рассмотрим как это происходит.

Взаимодействие происходит существенно раличным путем в двух **режимах взаимодействия** между электронами, в зависимости от соотношения между временем между столкновениями и временем ее- взаимодействия в области низких температур $\tau^{-1} \propto T$:

(1) диффузионный режим взаимодействия $T\tau \ll 1$.

(2) баллистический режим взаимодействия $T\tau \gg 1$.

В первом случае (низкие мемпературы, или т.н. "грязный предел") время сохранения фазы или время жизни квазичастиц гораздо больше чем среднее время между встречей электронов. В результате электроны многократно встречаются друг с другом сохраняя память о своей фазе (т.е. о своейпредыдущей встрече). Во втором случае ("высокие температуры" или т.н. "чистый предел") электроны за время жизни встечаются лишь однократно и, стало быть, взаимодействуют однократно.

В этих двух случаях возникающие поправки к проводимости отличаются между собой по физ смыслу и функционально. В первом случае они будут иметь в 2D системах логарифмическую температурную зависимость, во втором случае - линейную по T зависимость. Понятно, что приведенные неравенства являются качественными. Чтобы определить количественно кроссовер между двумя режимами нужно приравнять друг к другу поправки в двух режимах и найти такое значение температуры (или $T\tau$), при котором поправки в дифузионном и в баллистическом режимах взаимодействия становятся равными. Температура кроссовера будет содержать численные коэффициенты, а также ферми-жидкостные параметры. Кроме того, температура кроссовера также будет различной для различных характеристик системы, например таких как проводимость, восприимчивость, теплоемкость и т.п.

В диффузионном режиме взаимодействия поправка впервые была вычислена в работах [1, 2]. В более общем, но предварительном виде эти поправки рассмотрены в монографии [3]. Наиболее полно, во всем же диапазоне температур, включая кроссоверный режим, поправки были вычислены в серии работ Zala, Narozhyi, Aleiner в 2001-2003гг.

Квантовая поправка к времени сбоя фазы

Поправка $\Delta(\tau_{\phi}^{-1})$ вычислялась аналитически и численно во многих работах в частности в работе [4] в терминах ферми жидкости, по теории возмущений. В случае отсутствия магнитного поля, в диффузионном режиме она имеет вид

$$\tau_{\phi}^{-1} = (1+A)\frac{T}{g}\ln\left[g(1+F_0^a)\right] + B\frac{T^2}{E_F}\ln(2E_F\tau)$$

$$A = \frac{3(F_0^a)^2}{(1+F_0^a)(2+F_0^a))}$$

$$B = \frac{\pi}{4}\left(1 + \frac{3(F_0^a)^2}{(1+F_0^a)^2}\right),$$
(20.50)

где $g = 2\pi\hbar/(e^2\rho_{\Box})$ - безразмерная проводимость 2D-системы и ρ_{\Box} - сопротивление "на квадрат" (в 2D системе сопротивление и удельное сопроотивление равны)

В баллистическом режиме взаимодействия $T\tau\gg 1$

$$\frac{1}{\tau_{\phi}} = \frac{\pi^2}{4} \frac{T^2}{E_F} \ln\left(\frac{2E_F}{T} + C(T, E_F, F_0^a)\right)$$
$$C = \frac{3(F_0^a)^2}{(1+F_0^a)^2} \ln\left(\frac{E_F}{T\sqrt{b(F_0^a)}}\right), \qquad (20.51)$$

где численная константа $b(F_0^a) = (1 + (F_0^a)^2)/(1 + F_0^a)^2.$

Заметим, что температура кроссовера в данном случае отвечает условию $T\tau = 1 + F_0^a$. Поскольку $F_0^a < 0$, то температура кроссовера ниже, чем $1/\tau$.

Квантовая поправка к проводимости в нулевом поле

В диффузионном режиме взаимодействия поправка взаимодействия к проводимости вычислялась в нескольких работах, по теории возмущений, в рамках ферми-жидкости (для обзора работ см. [3]). В диффузионном режиме взаимодействия она имеет вид

$$\Delta \sigma = -\frac{e^2}{2\pi^2 \hbar} \ln \hbar T \tau \left[1 + N_t \left(1 - \frac{\ln(1 + F_0^a)}{F_0^a} \right) \right]$$
(20.52)

Здесь $N_t = 4n_v^2 - 1$ число триплатных членов, $N_t = 3$ ддя однодолинной системы, $N_v = 15$ для двухдолинной системы (напр., электроны в Si). Первая единица в квадратных скобках - это интерференционная поправка от слабой локализации, единица в круглых скобках - синглетный член взаимодействия. Оба синглетных члена имеют знак, соответствующий слабой локализации.

С триплатными членами интереснее: ввиду того, что $F_0^a < 0$, логарифм отрицателен и триплатная поправка работает противоположно поправке слабой локализации и синглтному члену. При больших значениях $|F_0^a|$ суммарная поправка $\Delta \sigma$ может стать отрицательной. Это прекрасно наблюдаается в экспериментах с 2D сильно-коррелированными системами.

В баллистическом режиме взаимодействия температурная зависимость скорости рассеяния была вначале получена в приближении Хартри [6, 7, 8, 9]. Во-первых, результаты [6, 7, 8, 9] учитывают только члены взаимодействия типа Хартри, и игнорируют обменные члены (типа Фока). Во-вторых, эта теория, по существу, использует пертурбативное разложение в терминах параметра взаимодействия, которое нарушается для более сильной связи (большие r_s). Оба вопроса приводят к неправильным теоретическим предсказаниям на количествнном уровне и, частично, даже на качественном уровне.

Наиболее полно поправка к проводимости была вычислена в работе [5] в обоих режимах взаимодействия, а также в крос-

Рис. 20.1: Рассеяние при участии осцилляций Фриделя. Интерференция между двумя путями A и B, в основном приводит к обратному рассеянию. Осцилляции Фриделя создаются из-за обратного рассеяния на примеси, путь C. Из работы [5]

соверном режиме $T\tau \sim 1$. Фактически, в этой работе был введен новый тип когерентных эффектов в рассеянии электрона на примеси – в баллистическом режиме взаимодействия.

Начнем с простейшего случая слабого короткодействующего взаимодействия $V_0(\vec{r_1} - \vec{r_2})$ и выясним как можно получить поправку к проводимости в баллистическом пределе, т.е. за счет одного акта рассеяния. Рассмотрим одиночную примесь, локализованную в некоторой точке в начале координат. Потенциал примеси $U(\vec{r})$ индуцирует модуляцию электронной плотности вблизи примеси. Осциллирующая часть модуляции - осцилляции Фриделя в 2D можно записать как

$$\delta\rho(\vec{r}) = -\frac{\nu\lambda}{2\pi r^2}\sin(2k_F r) \qquad (20.53)$$

Здесь \vec{r} - расстояние до примеси, а ее потенциал рассматривается в борновском приближении $\lambda = \int U(\vec{r}) d\vec{r}$. Вследствие электрон-электронного взаимодействия $V_0(\vec{r}_1 - \vec{r}_2)$ возникает дополнительный потенциал рассеяния из-за осцилляций Фриделя (20.53). Этот потенциал может быть представлен как сумма прямого (Хартри) и обменного (Фок) членов [31]:

$$\delta V(\vec{r}_1, \vec{r}_2) = V_H(\vec{r}_1)\delta(\vec{r}_1 - \vec{r}_2) - V_F(\vec{r}_1, \vec{r}_2)$$
(20.54)

Поправка к проводимости в ведущем порядке является результатом интерференции между двумя полуклассическими траекториями, изображенными на Рис. 20.1. Если электрон следует по пути **A**, он рассеивается за счет осцилляций Фриделя, создаваемых примесью, а путь **B** соответствует рассеянию самой примесью.

Интерференция наиболее важна для углов рассеяния, близких к π (или для обратного рассеяния), поскольку дополнительный набег фазы, накопленный электроном на пути "A" $(e^{i2kR}, где R - длина дополнительного интервала пути относи$ тельно "B", а <math>2k - разница между начальным и конечным импульсами для этого дополнительного интервала пути) компенсируется фазой осцилляций Фриделя e^{2i2k_FR} , так что амплитуды, соответствующие двум траекториям, являются когерентными. В результате вероятность обратного рассеяния больше, чем классическое ожидание (учитываемое при расчете проводимости Друде).

Следовательно, учет интерференционных эффектов приводит к поправке в проводимости. Заметим, что интерференции сохраняются на больших расстояниях, ограничиваясь только температурой $R \approx 1/|k - k_F| \leq v_F/T$. Таким образом, существует возможность того, что поправка будет иметь нетривиальную температурную зависимость. Знак поправки зависит от знака константы связи, описывающей электрон-электронное взаимодействие.

Исходя из этих качественных сображений в [5] была вычислена поправка к проводимости Друде в "зарядовом" и триплетном каналах взаимодействия. Поправка в зарядовом канале объединяет вклад Фока и синглетную часть вклада Хартри.

$$\Delta \sigma = \delta \sigma_T + \delta \sigma_C \tag{20.55}$$

Вклад в зарядовом канале

$$\delta\sigma_C = \frac{e^2}{\pi\hbar} \frac{T\tau}{\hbar} \left[1 - \frac{3}{8} f(T\tau) \right] - \frac{e^2}{2\pi^2\hbar} \left(\ln\frac{E_F}{T} \right)$$
(20.56)

Вклад в триплетном канале равен

$$\delta\sigma_T = A(F_0^a) \frac{e^2}{\pi\hbar} \frac{T\tau}{\hbar} \left[1 - \frac{3}{8}t(T\tau, F_0^a) \right] - 3B(F_0^a) \frac{e^2}{2\pi\hbar} \ln\left(\frac{E_F}{T}\right)$$
(20.57)

Здесь функция А описывает амплитуду триплетной поправки в баллистическом режиме взаимодействия:

$$A(F_0^a) = \frac{3F_0^a}{(1+F_0^a)}$$
(20.58)

и функция *B* - амплитуду поправки в диффузионном режиме заимодействия:

$$B(F_0^a) = N_t \left(1 - \frac{1}{F_0^a} \ln(1 + F_0^a) \right)$$
(20.59)

Функции $f(T\tau)$ в (20.56) и $t(T\tau, F_0^a)$ в (20.57)) описывают кроссовер между диффузионным и баллистическим режимами взаимодействия. Согласно теории температура кроссовера $T^* = (1 + F_0^a)/2\pi\tau$ [5]. $N_t = 4(n_v)^2 - 1$, как и ранее, есть число триплатных членов взаимодействия. Графики функций f(x)и t(x) приведены на рисунках.

Рис. 20.2: Безразмерные функции f(x) и $t(x, F_0^a)$. Из работы [5].

При больших значениях параметров N_t и $|F_0^a|$ вклад $\delta\sigma_T$ преобладает, $d\sigma/dT$ становится отрицательной и проводимость растет с понижением температуры. На рисунке 20.4 показана типичная температурная зависимость проводимости для двумерной сильно-взаимодействующей системы электронов в широком диапазоне температур - от баллистического режима взаимодействия до диффузионного. Общая картина такова - при высоких температурах имеется баллистическая зависимость (линейная по температуре), которая ниже температуры кроссовера T^* переходит в диффузионную зависимость - более плавный догарифмический рост $\sigma(T)$ при понижении T.

Будет ли этот рост $\sigma(T)$ с понижением температуры длится до T = 0? Ответ - нет!

По мере снижения температуры вначале она становится ниже скорости междолинной релаксации $T = 1/\tau_{vv}$, долины перестают быть хорошими квантовыми числами и число триплетных членов уменьшается до $4n_v - 1$. Это соответствует температурам порядка 0.1К для 2D электронных систем в (001) кремнии. Наконец, когда температура станет ниже скорости спиновой релаксации, число триплатных спинов обратится в 1. Этому гипотетическому случаю соответствуют (недостижимые пока) температуры электронов порядка мкК. После умень-

Рис. 20.3: Измеренные температурные зависимости $\sigma(T)$ при различных электронных плотностях n = 15.1, 10.0, 5.5, 4.0, 2.9, 1.8, в единицах 10^{11} см⁻², сверху вниз. Кружками показаны экспериментальные данные; красными кривыми — теоретические зависимости. На левой панели пунктирная синяя кривая соответствует $T = 0.5(1 + F_0^a)^2 E_F$ - граница применимости теории по температуре. На правой панели показан тот же набор данных в более узком температурном интервале, тонкие стрелки соответствуют $T = \tau_{vv}^{-1}$, а толстые стрелки указывают на температуру кроссовера T^* . Зеленые кривые с пунктирными линиями на правой панели рассчитаны с использованием $N_t = 3$ (долины полностью перемешаны); синие пунктирные кривые $\sigma(T) = \sigma_D + \delta_C + N_t(T\tau_{vv}) \times \delta\sigma_T(T)$ с непрерывно изменяющимся N_t , в пределах от $N_t = 3$ (для $T \gg \tau_{vv}^{-1}$) до $N_t = 15$ (для $T \gg \tau_{vv}^{-1}$). Из работы [10].

шения числа триплатных членов, синглетные члены начинают доминировать, заставляя проводимость снова снижаться при $T \rightarrow 0$. Результаты измерений и их аппроксимация по формулам (20.55) показаны на рисунке 20.4. Показана также зависимость с модельным плавным изменением числа триплетных членов $N_t(T)$ при понижении температуры.

Результаты вычисления и измерения F_0^a из $\sigma(T)$

Видно, что температурная зависимость проводимости определяется одним ферми-жидкостным параметром F_0^a . Для определения его величины в зависимости от r_s используются разные приближения. В частности, в [5] получены приближенные аналитические зависимости

$$F_0^a \to -\frac{1}{2\pi} \frac{r_s}{\sqrt{2 - r_s^2}} \ln\left(\frac{\sqrt{2} + \sqrt{2 - r_s^2}}{\sqrt{2} - \sqrt{2 - r_s^2}}\right), \qquad r_s^2 < 2$$
$$F_0^a \to -\frac{1}{\pi} \frac{r_s}{\sqrt{r_s^2 - 2}} \arctan(\sqrt{r_s^2/2 - 1}) \qquad r_s^2 > 2 \qquad (20.60)$$

Фактически, сравнение с теорией [5] измеренной температурной зависимости $\sigma(T)$ в нулевом поле является одним из методов измерения F_0^a [10].

20.2 Измерения перенормировки спиновой восприимчивости

Перенормированная спиновая восприимчивость

$$\chi^*/\chi_b = \frac{g^*m^*}{2m_b}.$$

легко измеряется различными методами, которые практически не зависят от моделей и предположений.

Гораздо труднее разделить ее на сомножители и определить отдельно перенормировку g^* и m^* . Для этого приходится полагаться на различные модели.

30

20.2.1 Определение F_0^a из биений квантовых осцилляций

В работах [11, 12] был предложен и использован способ измерений квантовых осцилляций в магнитном поле с электрически управляемым вектором. Принцип метода поясняется на Рис. 20.5. Компонента поля в плоскости двумерной системы B_{\parallel} создает неравное заселение спиновых подзон, необходимое для определения спиновой восприимчивости. Нормальная компонента поля необходима для возникновения квантования Ландау, наблюдения квантовых осцилляций и подсчета с их помощью заселенности каждой спиновой подзоны.

В присутствии перпендикулярного поля B_{\perp} энергетический спектр двумерной системы полностью квантован и состоит из эквидистантных уровней Ландау. Приложение поля B_{\parallel} вызывает биения квантовых осцилляций, которые регистрируются в зависимости от B_{\perp} . Зеемановское расщепление уровней Ландау приводит к неравному числу заполненных уровней Ландау в подзонах \uparrow и \downarrow . Поэтому различны и скорости изменения с полем B_{\perp} наивысших уровней Ландау в двух подзонах. При некоторых значениях поля уровни Ландау от двух подзон пересекают E_F одновременно, осцилляции от них имеют одинаковую фазу их амплитуды складываются. При других значениях поля уровни Ландау в двух подзонах проходят через уровень Ферми в противофазе и осцилляции от них вычитаются.

Частота биений пропорциональна спиновой поляризации 2D электронной системы [12]:

$$P \equiv \frac{n_{\uparrow} - n_{\downarrow}}{n} = \frac{\chi^* B_{\text{tot}}}{g_b \mu_B},\tag{20.61}$$

где $n_{\uparrow}, n_{\downarrow}$ обозначают плотности электронов в \uparrow и \downarrow подзонах,

Рис. 20.4: (а) Значения F_0^a , полученные в результате сопоставления зависимостей $\sigma(T)$ и $\sigma(B)$ с теорией [5]. Пунктирная кривая соответствует значению $F_0^a(r_s)$, извлеченному из измерений биений квантовых осцилляций [12]. Заштрихованные области на панелях (а) и (b) показывают зависимость $F_0^a(r_s)$ полученную из измерений квантовых осцилляций в различных предположениях. (b) Сравнение F_0^a значений, вычисленных из измерений $\sigma(T)$ различными авторами. Из работы [10].

соответственно, $g_b = 2$ – зонное значение *g*-фактора Ланде для Si, и $B_{\text{tot}} = \sqrt{B_{\perp}^2 + B_{\parallel}^2}$. Для делокализованных электронов вырожденного 2D Ферми газа уравнение (20.61) можно представить в более удобном для практики виде:

$$P = g^* m^* \frac{B_{\text{tot}}}{\nu B_\perp},\tag{20.62}$$

где $\chi^* \propto g^* m^*$ – Ферми-жидкостная перенормированная восприичивость Паули, *g*- фактор и эффективная масса, соответственно и $\nu = nh/(eB_{\perp})$ - фактор заполнения уровней Ландау.

Рис. 20.5: Схематический спектр уровней Ландау в двух спиновых подзонах, расщепленных полем B_{tot} . Из работы [12].

T.o., из периода биений можно прямо определить спиновую поляризацию и искомую спиновую восприимчивость.

Во взаимодействующей системе форма и амплитуда осцилляций конечно могут отличаться от простой Ферми-жидкостной теории [16, 17, 14, 15]. В частности, в случае сильного электрон-электронного взаимодействия, квазиклассическая формула Лифшица-Косевича [16, 17] требует модификации: эффекты взаимодействия приводят к температурно-зависящей перенормировке как m^* , так и T_D [15, 14, 13] в экспоненциальном амплитудном факторе.

Отмеченные осложнения, однако, несущественны для анализа биений, если искомой величиной является только период биений и фаза осцилляций, т.е. спиновая поляризация, и в конечном итоге, спиновая восприимчивость.

Замечания:

(1) Использованный метод измерения χ^* основан на определении соотношения между заселенностями двух спиновых подзон, т.е. M/B. Это, конечно, отличается от истинно термодинамического определения $\chi_T = dM/dB$. Однако, если вклад в измеряемые величины вносит один и тот же ансамбль электронов и если M линейно зависит от поля, то χ^* и χ_T должны

Рис. 20.6: Пример биений осцилляций Шубникова-де Гааза для (а) $n = 3.76 \times 10^{11} \text{cm}^{-2}$, T = 0.2 K, $B_{\parallel} = 2.15 \text{T}$, P = 20%; (b) $n = 1.815 \times 10^{11} \text{cm}^{-2}$, T = 0.2 K, $B_{\parallel} = 2.5 \text{T}$, P = 64%. Экспериментальные данные показаны точками, их аппроксимация формулами [16] (с показанными параметрами) -жирными сплошными линиями. Все данные нормированы на амплитуду основной гармоники $A_1(B)$. Из работы [12, 13].

совпадать.

(2) По мере увеличения взаимодействия (r_s) в 2D системе возможно развитие неустойчивости однородного зарядового или спинового состояния и тогда рассмотрение эффектов взаимодействия должно проводиться с учетом пространственной неоднородности (неоднофазности). Экспериментальные проявления этой неустойчивости рассматриваются обзоре [18].

(3) Кроме того, на измеряемое значение восприимчивости влияет отклонение от идеальности 2D системы, т.е. ненулевая толщина 2D слоя, характер потенциала примесей (короткодействующий иди плавный дальнодействующий), а также неоднофазность системы, приводящая к зависимости воспри-

имчивости от B_{\parallel} .

Для иллюстрации последнего замечания на рисунке 20.7 приведена сводка результатов измерений F_0^a проведенных различными исследователями на различных образцах с 2D электронными и дырочными системами носителей. Помимо разброса точек видно, что данные разбиваются на две группы - с короткодействующим потенциалом примесей (например, Si) и плавным дальнодействующим потенциалом (гетероструктуры GaAs/GaAlAs с δ -легированием). Для последнего случая Горным и Мирлином была развита теория, идейно аналогичная [5], также в терминах квантовых поправок взаимодействия, но с более громоздкими формулами и поэтому она здесь не рассматривается.

20.3 А что остается за бортом ?

Существует целый пласт сильных эффектов электрон-электронного взаимодействия, которые остались вне рассмотрения.

- Нарушение пространственно однородного состояния в спиновом или зарядовом каналах. Сюда входят такие состояния как волна зарядовой плотности, вигнеровский кристалл, волна спиновой плотности, глобальная или локальная стонеровская неустойчивость и т.д.
- Эффекты взаимодействия в квантующем слабом магнитном поле. Сюда входят перенормировка амлитуды квантовых осцилляций эффектами межэлектронного взаимодействия и способ определения одетой эффективной массы электронов.

Рис. 20.7: Сводка значений F_0^a . Красные заполненные символы- для индуцированных 2D систем, пустые синие символы - для 2D систем n- и p-типа в различных материалах. Зеленый квадрат обрамляет диапазон F_0^{σ} , ожидаемый для 2D n-GaAs систем согласно теории экранирования плавного потенциала. Штриховая линия проведена для ясности восприятия. Из работы [19].

- Эффекты взаимодействия в квантующем сильном магнитном поле. Сюда входят эффекты взаимодействия электронов на разных уровнях Ландау, приводящие к осциллирующей от поля зависимости перенормировки расстояния между уровнями Ландау, уширения уровней, осцилляции уровня Ферми, скирмионы, и т.д.
- Эффекты взаимодействия на частично заполненном уровне Ландау. Это -дробный квантовый эффект Холла, композитные фермионы.

- Потеря устойчивости ферми-жидкостного состояния и образование плоской зоны на уровне ферми. Это теоретическое предложение носит название фермионной конденсации.
- Потеря устойчивости ферми-жидкостного состояния и образование маргинальной ферми-жидкости.
- и т.д., и.т.д.

20.3.1 Приложение 1. Задачи

Литература

- B.L. Altshuler, A.G. Aronov, and D.E. Khmelnitsky, J.Phys. C 15, 7367 (1982).
- [2] H. Fukuyama and E. Abrahams, Phys. Rev. B 27, 5976 (1983)
- [3] B.L. Altshuler and A.G. Aronov in Electron-Electron Interactions in Disordered Systems, eds. A.L. Efros, M. Pollak (North-Holland, Amsterdam, 1985).
- [4] B. N. Narozhny, Gabor Zala, and I. L. Aleiner, Phys. Rev. B, 65, 180202R (2002).
- [5] Gabor Zala, B. N. Narozhny, I. L. Aleiner, Interaction corrections at intermediate temperatures: Longitudinal conductivity and kinetic equation, Phys. Rev. B 64, 214204 (2001).
- [6] F. Stern, Phys. Rev. Lett. 44, 1469 (1980).
- [7] F. Stern and S. Das Sarma, Solid-State Electron. 28, 158 (1985).
- [8] Gold and V.T. Dolgopolov, Phys. Rev. B 33, 1076 (1986).
- [9] S. Das Sarma and E.H. Hwang, Phys. Rev. Lett. 83, 164 (1999).

- [10] Interaction Effects in Conductivity of a Two-Valley Electron System in High-Mobility Si Inversion Layers, N.N. Klimov, D.A. Knyazev, O.E. Omel'yanovskii, V.M. Pudalov, H.Kojima, M.E. Gershenson, Phys.Rev. B 78, 195308 (2008).
- [11] M. Gershenson, V.M. Pudalov, H. Kojima, N. Butch, G. Bauer, G. Brunthaler, A. Prinz, Direct measurements of the effective g-factor and mass of electrons in Si-MOSFETs over a wide range of densities, Physica E, 12, 585 (2002)
- [12] V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Low-Density Spin Susceptibility and Effective Mass of Mobile Electrons in Si Inversion Layers, Phys. Rev. Lett. 88, 196404 (2002)
- [13] Pudalov V M, Gershenson M E, Kojima H, Probing electron interactions in a two-dimensional system by quantum magneto-oscillations, Phys. Rev. B 90, 075147 (2014).
- [14] Martin G W, Maslov D L, Reizer M Yu Phys. Rev. B 68, 241309 (2003)
- [15] Adamov Y, Gornyi I V, Mirlin A D, Phys. Rev. B 73, 045426 (2006)
- [16] Лифшиц И М, Косевич А М ЖЭТФ 29, 730 (1956); [JETP
 2, 636 (1956)]
- [17] Isihara A, Smrčka L J. Phys. C: Solid State Phys. 19, 6777 (1986)
- [18] В.М. Пудалов, Фазовое расслоение в двумерных электронных системах: экспериментальная картина явлений, Письма в ЖЭТФ 116, вып. 7, с. 456 (2022).

- [19] Clarke W R, C. E. Yasin, A. R. Hamilton, A. P. Micolich, M. Y. Simmons, K. Muraki, Y. Hirayama, M. Pepper, D. A. Ritchie, *Impact of long- and short-range disorder on the metallic behaviour of two-dimensional systems*, Nat. Phys. 4, 55 (2007)
- [20] J. J. Quinn, R. A. Ferrell, Phys. Rev. **112**, 812 (1958).
- [21] J. Bardeen, Phys. Rev. 50, 1098 (1936).
- [22] Д. Пайнс, Элементарные возбуждения в твердых телах, М., Мира, 1965. [D. Pines, Elementary Excitations in Solids, N.Y. 1963]
- [23] Р. Пайерлс, Квантовая теория твердых тел, пер. с англ. М., Изд. Ин.Лит, 1956ю
- [24] D. R. Hartree, Proc. Cambr. Phil. Soc. 24, 89 (1928).
- [25] V. A. Fock, Zs. Phys. **61**, 126 (1930.)
- [26] Ф. Зейц (F. Seitz), Современная теория твердого тела, М. -Л. (1949).
- [27] А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, М., Физматлит, 1962.
- [28] G. F. Giulianni and G. Vignale, Quantum theory of the electron liquid, Cambridge University Press, 2005. ISBN-13 978-0-521-52796-5
- [29] G. D. Mahan, Many particle physics, Kluwer/Plenum 3rd edition (2000). ISBN 0-306-46338-5 (2004).
- [30] Блохинцев, Введение в квантовую механику, М., 1976.

[31] Ч. Киттель, *Квантовая теория твердых тел*, М., Наука, 1967