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Abstract

Laterally modulated two-dimensional systems serve as a tunable media demonstrating various ef-
fects, interesting both for fundamental physics and for potential applications. From the first princi-
ples, modulation leads to essential changes when the modulation period is less or comparable with
any characteristic length of the system (mean free path, coherence length, phase coherence length
etc.). At the same time, in the opposite, classical limit (modulation period is much bigger than any
characteristic length of the system) the system is still heterogeneous and is expected to depend on
the properties of the modulation. In this work the experimental investigation of conventional 2D
system in the metal-oxide-semiconductor structure with lateral modulation in a form of an array
of macroscopic islands is carried out. Besides temperature and magnetic field, the electron densi-
ties in the islands array and residual 2D gas parametrize the system (they both can be controlled
independently). Thus, investigated system serve as an effective media with two subsystems and
large space of parameters. The magnetotransport measurements of such system revealed different
regimes of the current transport: residual 2D gas-dominated, islands-dominated, shells(the tran-
sition regions)-dominated and insulating. The regimes are characterized by different behavior of
Hall coefficient with magnetic field and gate voltage, temperature dependence of resistivity and
Shubnikov-de Haas patterns. The results presented in my thesis show the feasibility of this system
to be used as laterally modulated two-dimensional effective media in potential applications.
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Chapter 1

Introduction

2D systems gained a lot of interest from physicists as the systems where some effects emerge or are

enhanced due to lower dimensionality. Also these systems were tunable and, therefore, were very

perspective for applications. After exfoliation of graphene and fabrication a sample for transport

measurements out of flake performed by Geim and Novoselov in 2004[1] without sophisticated

and expensive molecular beam epitaxy growth techniques (the authors won Nobel Prize 2011 for

this), the interest to 2D systems increased significantly. Past years lots of systems such as two-

dimensional dichalcogenides[2], topological insulators[3] etc.[4] have been reopened and actively

explored. Another important feature of all 2D structures is a possibility of easy control of their

properties by changing the density of charge carriers through gate voltage. Nowadays the physics

of 2D systems has become essential and rapidly developing part of condensed matter physics and

such systems serve convenient platforms for numerous physical experiments and applications.

The lateral modulation of 2D systems opens extra functionality and can lead to new in-

teresting effects such as gate-tunable superconductivity in a lattice of superconducting tin islands

on graphene[5], recent discovery of correlated state and superconductivity in magic-angle twisted

bilayer graphene [6, 7], experimental observation of Holfstatder’s butterfly[8], commensurability

effects in semiconducting quantum wells with lateral modulation[9], selectivity to circularly polar-

ized light in chiral laterally modulated structures[10] etc. Modulation period is typically much less

than any characteristic length of the system (mean free path, coherence length, phase coherence

length for example) and the related effects weaken with the increase of modulation length. On the

other hand, even in opposite limit, when modulation period is much bigger than effective length,

the system still remains heterogeneous and serve as effective media. This limit wasn’t explored

yet, so it was decided to investigate 2D system with macroscopic modulation in the form of array

of areas (which are called islands further) that are controlled by separate gate.

In this thesis the examination of the conductive properties of laterally modulated 2D sys-

tem that is based on archetypal Si-MOSFET platform is demonstrated through magnetotransport

measurements. Such system is similar to granular materials, studied broadly in the past[11] but dif-

fers from them by: (i) complete two-dimensionality and tunability of both parent electron gas and

islands; (ii) periodicity, i.e. absence of randomness in positions of islands; (iii) smooth transition
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regions (larger than mean free path) between parent gas and islands.

Previously the transport studies of modulated semiconducting 2D systems were focused

either on clean systems (where mean free path is larger than the period of modulation and all

studied phenomena are essentially ballistic[12, 13, 14, 15, 16]) or on Aharonov-Bohm/Altshuler-

Aharonov-Spivak oscillations[17, 18], i.e. coherent low-temperature mesoscopic effects[19, 20,

21]. All these phenomena are essentially nano-scale. I should also mention a group of a papers[22,

23, 24, 25, 26], where percolation and transition to localization phenomena in the arrays of dots/anti-

dots were explored. Thus, the analysis of the effects in macroscopically modulated 2D system in

diffusive regime of current flow performed in this work is scientifically valid.
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Chapter 2

Theoretical basics

2.1 MOSFETs and 2D systems

The textbook example of 2D system is Metal-Dielectric-Semiconductor(MDS) structures. The

most common structures of this type are the ones produced on the basis of silicon with SiO2 ox-

ide as dielectric which, therefore, are called silicon Metal-Oxide-Semiconductor(MOS) structures.

Such structures let people obtain 2D system on the interface between Si and SiO2 with controlled

electron (hole) density through voltage to metal, which is called gate. On the fig.2.1 shown the

schematic image of MOS Field-Effect-Transistor(FET) which is very broadly used in industry as

an element of logic schemes in modern microelectronics due to its feature to be opened (conductive

regime) or closed (isolating regime) depending on controlled parameter - gate voltage.

Figure 2.1: The scheme of MOSFET. p means weakly doped p-type semiconductor, whereas n+
means highly doped n-type semiconductor

Two-dimensionality means that the electron motion is possible only in two directions. In

terms of quantum mechanics it means that wave function of charge carrier is localized along one

axis. In other words, the effect of dimensional quantization occurs, i.e. the size of classically al-
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lowed region (where potential energy less than energy of carrier) becomes comparable with wave-

length of the carrier. It leads to quantization of momentum along this axis, so only two components

of momentum leave free.

As well-known from university course of solid state physics(SSP), Bloch theorem restricts

the possible values of electron wave numbers inside crystals that leads to the emergence of pro-

hibited areas of carriers energy, i.e. the formation of energy bands (it is called band structure)[27].

From common principles carriers fill low-energy states until some level that is called Fermi energy.

For further terminology: the nearest to Fermi level zone with higher energies is called conduction

band, whereas nearest zone with lower energies - valence band. Also there is difference between

real electrons that round around nucleus and so-called quasiparticles that serve as charge carriers

in crystals. Quasiparticles have such name as they are just objects that are convenient for theoreti-

cal description of processes in crystals, this is not real particles. The quasiparticles that emerge in

conduction band are also called electrons whereas emerged in valence band are called holes. Fermi

level lies deeply under the level of carrier energy in vacuum that means the crystal is stable. The

difference between the energy of carrier in vacuum and Fermi energy is called work function. For

simplicity, further we assume that work functions of metal and semiconductor are equal. The metal

in SSP means that Fermi level lies inside some band, in insulator Fermi level lies inside he gap and

the gap is relatively big. Semiconductor is intermediate state: Fermi level lies inside the gap, but

gap is quite small and, for example, temperature can induce charge carriers in bands. We consider

p-type semiconductor that means that semiconductor is doped with acceptor atoms, i.e. those who

have less valence electrons than parent atoms (the atoms that have more valence electrons are called

donors). In terms of band structure it means that Fermi energy lies near or slightly in valence band.

Semiconductor and metal are electrically tied through DC voltage source such that semiconductor

potential is taken as zero and metal potential is counted in positive direction. Move further and

look how the application of gate voltage changes MOSFET structure.

This problem can be solved exactly[28] by applying Boltzmann distribution of electrons

and holes:

np = np0 · exp(eφ/kT ) (2.1)

pp = pp0 · exp(−eφ/kT ) (2.2)

where e - elementary charge (e > 0), T - temperature, k - Boltzmann constant, φ - electrical

potential, np0 and pp0 - equilibrium (deep inside the crystal where potential is zero) electrons and

holes density, respectively

and 1D Poisson equation:
d2φ

dx2
= −4π

ρ(x)

ϵ
(2.3)
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where ϵ - permittivity of semiconductor, ρ(x) - volume charge density:

ρ(x) = e(N+
D −N−

A + pp − np) (2.4)

where N+
D and N−

A - density of ionized donor and acceptor atoms, respectively.

Moreover, deep inside semiconductor, where φ = 0, electroneutrality condition is met, i.e.

ρ(x) = 0, therefore

N+
D −N−

A = np0 − pp0 (2.5)

These relations are enough to solve the problem and obtain the dependencies of the electri-

cal potential, field and density of charge carriers on coordinate. As the final expressions are very

bulky and complex, here I will give a qualitative description only. It can be obtained by applying

energetic diagrams pictures - the schematic dependence of charge carriers full energy from coordi-

nate. Inside the semiconductor the levels must remain unchanged, whereas in the metal all levels

must be shifted by eV value above. Conductivity of bulk metal is much better than conductivity

of bulk semiconductor that let us consider metal as equipotential volume. Than on the interface

between the semiconductor and the oxide (as inside oxide) the distortion of energy levels occur.

Considering all simplifications, at zero gate voltage Vg = 0 energy diagram is shown in

Fig.2.2a. Further discussion is based on equilibrium condition: electrochemical potential ϕ =

εF − eφ must be equal along the whole system. Therefore by applying negative voltage to metal

the Fermi level in metal raises on the value −eV . In semiconductor the potential decreases and,

therefore, the valence band edge curls up. It is illustrated on the fig.2.2b.

More interesting case is applying positive voltage Vg > 0. Then the Fermi level in metal

lowers as well as edges of bands in semiconductor (fig.2.2c). By applying relatively high Vg the

edge of conduction band εc intersect electrochemical potential and states below electrochemical

potential on the interface between semiconductor and oxide emerge. At zero temperature all states

below ϕ are filled and all states above are empty. Thus, on the interface between semiconductor

and oxide quite narrow layer of classically allowed states emerges that is called inversion layer. It

has such name because in p-type semiconductor, where main carriers in bulk are holes, the layer of

electrons emerges. Moreover, it is worth to mention that behind the inversion layer (farther from

oxide) the depletion region emerges - the region where the electrochemical potential lies relatively

far as from the bottom of conduction band εc as from the top of the valence band εv. Therefore in

this region at low temperatures there are no charge carriers.

It is important to obtain the dependence of electron density from gate voltage. Considering

only conductive regime ofMOSFET (when the inversion layer exists) almost all charge in semicon-

ductor is collected in the inversion layer. System is electrically neutral as the whole, therefore the

charge in the metal must compensate the charge in semiconductor. Metal always collect charge on
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Figure 2.2: Energetic (band) diagrams of MOS transition: (a) at zero gate voltage VG = 0, (b) at
VG < 0, (c) at VG > 0 [28]

the boundary, therefore the effective capacitor emerges: negative plate is inversion layer, positive

plate is the boundary of metal, the surface density is n, applied voltage is Vg. At this moment take

into account that semiconductor and metal have different work functions. It just means that it is

needed to apply some threshold voltage Vth to compensate this difference and reduce the problem

to considered one (when the band edges were straight at Vg=0). Following Gauss relation it can be

written:

E =
4πen

ϵ
(2.6)

where ϵ - silicon oxide SiO2 permittivity.

Also oxide can store some randomly distributed charges that are frozen in dielectric. It also

leads to some additional potential difference needed to make band edges straight. Thus, the total

gate voltage is summed up from Vth originating from work functions difference and stored charge
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in dielectric and from Vc produced by surface charges and falling on the dielectric:

Vg = Vth +
4πen

ϵ
d (2.7)

where d - oxide thickness.

To sum up, n ∝ Vg−Vth

d
, where Vg - gate voltage, Vth - threshold voltage, d - oxide thickness.

2.2 2D systems behavior in weak magnetic fields

Let’s consider how 2D system behaves itself being subjected to magnetic field in direction perpen-

dicular to the plane of the system. Kinetic Boltzmann equation:

∂f

∂t
+ υ⃗

∂f

∂r⃗
+ F⃗

∂f

∂p⃗
= St[f ] (2.8)

where f - electron distribution function, St[f ] - collision integral

As we are considering stationary and homogeneous problem, the first and the second term

vanish. Electrons are subjected to electrical E⃗ and magnetic B⃗ fields, therefore:

F⃗ = −eE⃗ − e

c

[
υ⃗ × B⃗

]
(2.9)

Minuses comes from negative charge of the electron (taking e > 0). Here is tau-approxi-

mation for Boltzmann equation:

St[f ] = −δf

τ
(2.10)

where δf = f − f0, f0 - equilibrium distribution function

Also notice, that ∂f0
∂p⃗

= ∂f0
∂ε

∂ε
∂p⃗

= υ⃗ ∂f0
∂ε
. In term with electric field change f derivative with

f0 derivative because we suppose δf ≪ f0. The same can’t be performed with the term with

magnetic field because force applied to electron from magnetic field is perpendicular to electron

velocity, therefore scalar multiplication this force and electron velocity is equal to 0. That’s why

we have:

eτ

υ⃗ · E⃗ ∂f0
∂ε

+

[
υ⃗ × B⃗

]
c

∂δf

∂p⃗

 = δf (2.11)

From this point all subsequent reasoning are made for 2D systems with parabolic expression

for energy dispersion. For such systems the momentum and velocity of charge carrier are directly

proportional to each other and the coefficient of proportionality is equal to effective mass of the

carriers. Let’s find δf in the following form: δf = p⃗ · χ⃗. Then the derivative ∂δf
∂p⃗

can be changed

on χ⃗ as the second term is proportional to p⃗, therefore it will be shrunk after scalar multiplication
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with the force from magnetic field. Besides it is worth to mention that
[
υ⃗ × B⃗

]
· χ⃗ =

[
B⃗ × χ⃗

]
· υ⃗.

As υ⃗ can have arbitrary direction, the vectors, that are multiplied by υ⃗ from the left and right sides

of equation sign, have to be equal:

χ⃗ =
eτ

m

(
∂f0
∂ε

E⃗ +
1

c

[
B⃗ × χ⃗

])
(2.12)

Let’s make, firstly, scalar and, secondly, vector multiplications of both sides of the equation

by B⃗. Using equation B⃗×
[
B⃗ × χ⃗

]
=

(
B⃗χ⃗

)
B⃗−B2χ⃗ obtain three equations (with the primordial

one):

B⃗ · χ⃗ =
eτ

m

∂f0
∂ε

B⃗ · E⃗ (2.13)

[
B⃗ × χ⃗

]
=

eτ

m

(
∂f0
∂ε

[
B⃗ × E⃗

]
+

1

c

(
B⃗χ⃗

)
B⃗ − B2

c
χ⃗

)
(2.14)

χ⃗ =
eτ

m

(
∂f0
∂ε

E⃗ +
1

c

[
B⃗ × χ⃗

])
(2.15)

Using expression for B⃗ · χ⃗ from the first equation in the second one and then
[
B⃗ × χ⃗

]
from

the second to the third one. Then getting expression for χ⃗:

χ⃗ =
c

1 +
(
eτ
mc

)2 ·B2

∂f0
∂ε

·
(
eτ

mc
E⃗ +

( eτ

mc

)2 [
B⃗ × E⃗

]
+
( eτ

mc

)3 (
B⃗E⃗

)
B⃗

)
(2.16)

Expressions for electron density and current density through distribution function:

n =

∫
fdΓp⃗ ≡

∫
f0dΓp⃗ (2.17)

j⃗ = −e

∫
fυ⃗dΓp⃗ ≡ −e

∫
δfυ⃗dΓp⃗ (2.18)

If integrand depends only on the energy, then dΓp⃗ can be changed onto D(ε)dε, where

D(ε) = dN
dε

- density of states. Applying easily calculations, it can be obtained:

D(ε) ∝


1√
ε

if d = 1

const if d = 2
√
ε if d = 3

, where d - dimensionality (2.19)

From the course of field theory it is known that
∫ (

p⃗A⃗
)
p⃗dΩp⃗ = A⃗

d
·
∫
p2dΩp⃗, where A⃗ -

constant vector, d - dimensionality, dΩp⃗ - an element of solid angle in the space of vector p⃗.

Considering that τ doesn’t depend on energy and taking into account that p⃗ · υ⃗ = 2ε the
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expression for current density becomes:

j⃗ =
2

d

ec

1 +
(
eτ
mc

)2 ·B2

(
eτ

mc
E⃗ +

( eτ

mc

)2 [
B⃗ × E⃗

]
+
( eτ

mc

)3 (
B⃗E⃗

)
B⃗

)
·

·
∫ (

−∂f0
∂ε

)
εD(ε)dε

(2.20)

Applying D(ε) dependence the following dependence is right: εD(ε) ∝ (ε)
d
2 . Then inte-

gral in expression for j⃗ can be integrated by parts. Free term is zero as f0 = 1

exp( ε−µ
T )+1

- Fermi

distribution. Then, taking into account an expression for n, the following formula is obtained:

j⃗ =
ne2τ

m

1

1 +
(
eτ
mc

)2 ·B2

(
E⃗ +

eτ

mc

[
B⃗ × E⃗

]
+
( eτ

mc

)3 (
B⃗E⃗

)
B⃗

)
(2.21)

This is an expression in CGS system. In SI the expression for force from the magnetic field

to electron doesn’t include c. That’s why in SI in expression for j⃗ all c are absent. Since for the

description of the systems the concept of carriersmobility is used, find the expression forµ via τ and

m. Carriers mobility is the coefficient between absolute value of drift velocity and absolute value

of of applied electrical field in absence of magnetic field: |v⃗| = µ
∣∣∣E⃗∣∣∣. Drift velocity is an average

speed of electron, the speed of electron stream. Since j⃗ = nev⃗, where v⃗ - drift velocity, applying

expression 2.21 for j⃗, in zero magnetic field j⃗ = ne2τ
m

E⃗, that leads to the following expression for

electron mobility µ:

µ =
eτ

m
(2.22)

Conductivity tensor σαβ is introduced by definition as jα = σαβEβ . Resistivity tensor is

reciprocal to the conductivity tensor ραβ = (σαβ)
−1. Choosing Z direction along vector of magnetic

field B⃗ from expression for j⃗ written above the following formulas for tensors are obtained:

σαβ =
σ0

1 + (µB)2


1 −µB 0

µB 1 0

0 0 1 + (µB)2

 (2.23)

ραβ =


σ−1
0 RB 0

−RB σ−1
0 0

0 0 σ−1
0

 (2.24)
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where

µ =
eτ

m
- electron mobility

σ0 =
ne2τ

m
- Drude conductivity

R =
1

ne
- Hall coefficient

(2.25)

Here are the expressions that have been obtained here and are important for following nar-

ration:

σxx =
ρxx

ρ2xx + ρ2xy

R =
ρxy
B

=
1

ne

ρxx =
m

ne2τ
=

1

neµ

(2.26)

Obtained results allow to determine the most important parameters of electron gas such as

concentration n and mobility µ from magnetotransport measurements. Firstly, that is seen from

expression for resistivity tensor ραβ , longitudinal term is symmetric in terms of magnetic field,

whereas transverse is antisymmetric. As an asymmetry of contacts is always present, data with

mixed components of tensor is always obtained out of the experiment. The components are easily

separated by symmetrization (for ρxx) and antisymmetrization (for ρxy) of measured values in terms

of field. Secondly, for determination of electron density of 2D gas it’s enough to measure ρxy

at B = ±1T and take the half of their difference (antisymmetrization). Obtained value is Hall

coefficient, that reciprocal to electron density and equal to 625Ohm
T

at n = 10−12cm−2. Finally,

mobility is equal to the Hall coefficient relation to the half of the sum ρxx in symmetrical weak

fields (B = ±1T , for example). At higher fields the oscillations of resistivity start whereas sharp

maximum is observed at values close to zero. It is connected with weak localization and has purely

quantum nature.

2.3 2D systems behavior in strong magnetic fields

In strong magnetic fields τ -approximation is not valid anymore. It’s well-known that electron spec-

trum in the direction perpendicular to magnetic field turns into the spectrum of quantum oscillator

forming equidistant ladder of energy levels called Landau levels (LLs)[30]. For 2D systems in

magnetic field perpendicular to the plane of 2D gas, the electron spectrum has the following form
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(in CGS):

En =~ωc

(
n+

1

2

)
± µBH , where

n ∈ {0, 1, 2...}

H - magnetic field

µB =
~e

2mec
- Bohr magneton

ωc =
eH

m∗c
- cyclotron frequency

(2.27)

The number of states on one Landau level per area (the degeneracy) is equal to:

NL =
eH

hc
(2.28)

From the formula 2.27 it is seen that Bohr magneton is expressed through free electron mass

me, whereas cyclotron frequency - through effective mass m∗. The latter usually much smaller

thanme, therefore Zeeman splitting (the second term in expression forEn), that emerges due to the

presence of spin from electron, is usually neglected. Moreover, in the formula 2.27 the g-factor was

taken to be 2 as for free electrons, while in crystal g-factor can differ from 2. For ideal crystal the

dependence of density of states on energy has a form shown in Fig.2.3a - a set of delta-functions at

ε = ~ωc

(
n+ 1

2

)
. However the presence of disorder leads to broadening of Landau levels (shown

in Fig.2.3b).

Electrons are fermions therefore their distribution function has the following form (Fermi-

Figure 2.3: Dependence of density of states of 2D electron gas in crystal in magnetic field: (a) ideal
crystal; (b) crystal with disorder

Dirac function):

f0 =
1

exp
(
ε−µ
T

)
+ 1

(2.29)
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At zero temperature all states below the Fermi level µ are filled and all states above are

empty. At nonzero temperature the precise border between filled and empty states is blurred near

the Fermi level on the value of order T . Therefore the derivative ∂f0
∂ε

has a form of narrow peak near

the Fermi level. On the order of temperature (i.e. width of this peak) the density of states usually is

a smooth function, therefore in the integral of the expression ∂f0
∂ε

D(ε) over energy density of states

can be taken constant and equal to the value at Fermi level and be taken away from the integral.

From expression 2.16 δf is proportional to ∂f0
∂ε
. This δf is placed under integral over dΓp⃗ =

D(ε)dε in expression for current j⃗. From everything mentioned above the following dependence

comes out:

σxx ∝ D(µ) (2.30)

With the growth of magnetic field, the degeneracy of LLNL increases as well as cyclotron

frequency. As Fermi level is defined as energy level under which the number of states is equal

to electron density in the system, the magnetic field-dependence of the Fermi level has a shape

of zigzag. Considering the position of Fermi level relatively to LLs at more realistic picture of

blurred LLs, the Fermi level moves to left (smaller number of LL). Therefore, with increase of

magnetic field the longitudinal conductivity σxx increases until Fermi level reaches the peak of

LL and then starts to decrease. Thus, σxx has clear maximums at values defined from condition

µ = ~ωc

(
N + 1

2

)
. As LL are symmetrical, when Fermi level is placed in the center of N level, the

half of this level is filled. So, N levels are filled (the counting starts from zero) and (N+1) level is

half-filled:

n =νNL

(
N +

1

2

)
, where

ν - degeneracy rate (valley and spin)

n - electron density

(2.31)

Often in 2D systems electron density is fixed (i.e. by gate voltage), so n = const. Then

the following expression is obtained:

N = α + β
1

H
, where α, β = const (2.32)

So the dependence of maximum number on inverse values of field is a straight with slope:

β =
hc

eν
n (2.33)

This expression let measuring the electron density from resistivity oscillations. As the same

reasoning could be made for minimum (then µ = ~ωcN and the integer number of LLs n = νNLN
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is filled), it is not important if the straight is built out of minimum or maximum positions: the

dependence of number of maximum (minimum) has to be built from reverse values of magnetic

field at which this maximum (minimum) occurs. Then the straight line should be built interpolating

the dots, the slope of this line is determined and from formula

n = ν
eβ

hc
(2.34)

electron density can be found. For silicon ν=4 as electrons has two-fold degeneracy from

spin and silicon has two equivalent valleys. Such oscillations are called Shubnikov-de Haas oscil-

lations (SdHO). The formulas above are written in CGS.

As it was mentioned, Zeeman splitting is quite small relative to cyclotron frequency (the

distance between LLs) but it is present. Its influence reduces to the formation of two closely posi-

tioned ”humps” out of one peak. At relatively big magnetic field the Zeeman splitting is big enough

that σxx reaches first ”hump”, decreases a little bit, then again starts to increase and reaches another

”hump”. Thus, the splitting of the longitudinal conductivity σxx maximum occurs when Zeeman

splitting is significant.

2.4 Metal-insulator transition in 2D systems

Ultimate behavior of the resistivity in the T → 0 limit has always been one of the major problems

in the solid state physics. This question has quite rich story[31]. All systems are divided in two

groups on the basis of temperature dependence of resistivity - metals and insulators. For typical

metals at T=0K a presence of finite value of resistivity ρ = ρimp, where ρimp comes from elec-

tron scattering onto impurities, is typical. With temperature increasing the metal resistivity also

increases, therefore if the system has positive temperature the derivative of the resistivity dρ
dT

> 0

it is called the metallic state of the system. Insulators are very diverse but all of them are charac-

terized by spatial localisation of electron that obstructs the conductivity of current. Therefore the

insulators are characterized by infinite growth of resistivity at zero-temperature limit. If the system

has negative temperature derivative of resistivity dρ
dT

< 0, it is called the insulating state of the

system.

As it was mentioned, 2D homogeneous systems are characterized by two parameters: den-

sity n and mobility µ. The latter is directly connected with disorder in the system: the stronger the

disorder, the smaller mean free path, the smaller charge carriers mobility. Besides, the cleaner the

sample, the smaller densities can be obtained in it. The density bottom borderline is defined by the

transition of the sample to the insulating state, where sample doesn’t carry current and, therefore,

magnetotransport measurements can’t be proceeded.
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Almost 40 years ago it was considered that 2D systems can’t be in metallic state. For

non-interacting systems it was proposed the scaling theory[32] that declared that at zero tempera-

ture all charge carriers become localized and the resistivity goes to infinity either logarithmically

(”weak localization”) or exponentially (”strong localization”) with temperature decrease. Then it

was determined[33] that the accounting of weak interparticle interactions leads to stronger localiza-

tion. In the limits of strong interactions between electrons it was proposed the formation of Wigner

crystal[34] that freezes if any disorder is present (and the disorder is always present) and doesn’t

carry current. The experiments were agreed with theory propositions.

It is worth to mention that electron interaction depends on electron gas density. Charged

particles interacts by Coulomb law:

Eint ∼
e2

ϵr
∼ e2

ϵ
n

1
2 ∝ n

1
2 (2.35)

Whereas kinetic energy of the particles has an order of Fermi energy:

EF =
p2F
2m∗ =

4π~2n
2m∗ν

∝ n, where

ν - degeneration (valley, spin)
(2.36)

The system is regarded as strongly interacting if interaction energy exceeds average kinetic

energy and vice verse. In 2D systems the counterintuitive result is correct: the higher the density

of the system, the weaker interactions inside it.

The technology of 2D structures fabrication was developed, so cleaner samples were pro-

duced where lower densities could be obtained. Some papers[35, 36, 37] appeared where metallic

state of 2D systems was observed. As a result, it turned out that in 2D systems with low density

and weak disorder metal-isolator transition is observed (shown in Fig.2.4). At very low densities

the system behave as isolator but there is some density nc exists such that for n > nc the system be-

haves as isolator for temperatures higher than T ∗ but has metallic behavior below this temperature.

For silicon structures the following expression were proposed phenomenologically for description

of resistivity behavior ρ in metallic state:

ρ(T ) = ρ1 + ρ2exp

[
−
(
T0

T

)γ]
(2.37)

where ρ1, ρ2 and T0 don’t depend on temperature, but depend on n, relation ρ2
ρ1
(rate of ”metallicity”)

decreases with growth of density, γ - constant of order 1.

Thus, 2D systems are in insulating state for any densities for the systems with strong dis-

order (low mobility charge carriers). If 2D systems are clean enough (carriers have high mobility

µ & 1m2/Vs) then at very low densities they are still insulators. But critical density nc emerge so
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Figure 2.4: Temperature dependence of resistivity in silicon MOSFET with small densities and
weak disorder for 30 different electron densities. On the insets the dependencies of resistivity on
temperature near the transition from metallic to insulating behavior are shown for another sample
for 7 densities (from paper [31])

that for densities above it the system demonstrates metallic behavior the stronger the closer density

to the critical one. At higher densities again weak insulating behavior can be observed. It is valid

for Si-based 2DES: a valuable metallicity (2-5 times growth of the resistivity from∼ 1K to∼ 10K)

emerges only if the peak mobility is rather large (µ > 1m2/Vs) whereas for relatively big densities

weak insulating behavior is observed again.
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Chapter 3

Samples and methods

3.1 Samples

In this work Si-MOSFETs structures with lithographically defined antidots array (AA) (further

sometimes islands are called antidots though they can be dots) were used. The samples were pro-

duced on factory Micron in Zelenograd and provided by Martyn Nunuparov from A.M.Prokhorov

Institute of General Physics of Russian Academy of Science. The optical images, TEM images

with cross-section and gate connection are shown schematically on fig.3.1. Panels a, b show op-

tical images of the sample. Diameter of the islands is 2.5 µm, lateral period d of the structure is 5

µm so that transport between them is diffusive (l ≪ d where l ∼ 50 nm is mean free path in the

highest mobility samples) and possible coherent effects are negligible (lϕ < d where lϕ < 500nm

is phase coherence length in studied temperature range). The AA has a Hall-bar shape with lateral

dimensions 0.4 mm x 0.4 mm.

The structure of sample is following (the description refers to panels c and d): bottom

layer in light-gray color is single crystalline (001) Si substrate; the dark color corresponds to SiO2,

areas above SiO2 inhomogeneously colored in gray correspond to polycrystalline heavily doped

Si (Si++) that, in fact, acts as metal. Trapezoidal-shaped Si++ is the gate of the antidots, the rest

polycrystalline heavily doped Si is the S2DG gate. For in-plane structure the following picture

can be helpful: conventional MOSFET with Si++ on the top was taken and applying lithography

technique the array of holes till the oxide was etched. Then the whole sample was burned for

forming silicon oxide on the top, i.e. the holes rested the same (there already SiO2 was on the top),

whereas the gate (Si++) became buried under layer of oxide. Then just another layer of Si++ on

the top was created. This layer is gate for islands as in area out of islands the potential of this gate

is screened by S2DEG gate, lying beneath.

Panel d shows the zoom in of the edge of the island. It is clearly seen that the oxide layer

becomes thicker closer to the edge of the S2DG. This leads to lower density of electrons in the

domains underneath. Moreover, gate electrodes are separated by oxide so that between antidots

and S2DG there is a region where density is expected to be low. We call these transition regions

shells. The panel e shows the same spot as panel b with all mentioned above areas in color.
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Figure 3.1: (a) Optic image of the corner of the AA (100x magnification), (b) zoom-in of image
(a) with direction of slice for TEM, (c) TEM image with scheme of the gating, (d) TEM image of
the border of the island (on the right), S2DG (on the left) and shell (between), (e) image (b) with
signed areas (1-island, 2-shell, 3-SD2G).

The system has 7 contacts pads: source (S), drain (D), potential contacts (Vxx, Vxy, Vxxxy)

and two gate contacts (Ga and Gg). The whole optical image of investigated sample with signed

contact pads is shown on fig.3.2.

Contacts S and D are called current contacts. They are connected to heavily doped with

donors areas in weakly doped with acceptors silicon substrate (schematically shown on fig.2.1).

The inversion layer (investigated 2D system) is formed on the interface between substrate and oxide

in vertical direction and between these areas in plane. It is important that the contact between S(D)

and AA is made across the whole sides of inversion layer as current injection occurs evenly across

the side of AA and, therefore, it is not needed to reason about heterogeneous spreading of current

and effects connected with it.

Gate contacts Ga and Gg are connected to corresponding layers of polycrystalline silicon.

Voltages are applied to these electrically decoupled gate electrodes that independently control the

density of the electrons (i) inside the islands (Va) and (ii) in the surrounding 2D gas (S2DG) (Vg).

As it was discussed earlier, some voltage on Gg is needed just to form 2D system.

Potential pads are just connected to the inversion layer at some points: Vxx and Vxxxy on

the same side, Vxxxy and Vxy opposite to each other. Unlike the current contacts, potential contacts
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Figure 3.2: Optical image of AA with signed contact pads

must be as small possible as they are assumed to probe the potential value at some particular point

of the system. Besides, potential contacts are good conductors (also heavily doped with donors

silicon), therefore they can be considered as equipotential. If the contact to the system is relatively

big, this contact influences local current distribution that makes data analysis more difficult. For

investigated system width/length between potential contacts relation w
l0
= 4.

All cryosystems have a stick which has batch of wires for electrical link of connectors on

the top and on the bottom of the stick. Top connectors are just connected to macroscopic wires

going to different measuring devices as lock-in amplifiers. The bottom part of the stick has a place

for holding the sample. But it is also needed to link connectors of the stick and contact pads of

the sample. Specific type of plate for substrate depends on the cryostate. For the most part of

measurements textolite plate with 8 gold tracks and soldered wires with dip-pins was used (see

fig.3.3) as cryostate stick had dip-connectors in the lower part. The substrate was attached to the

plate by using BF-2 glue. Connecting of the contact pads from sample and tracks from plate was

made either manually using silver paste or with help of manual wire bonder Kulicke and Soffa 4523

AD that basically welds micro wires. Used wires were either golden or 1-% Si/Al alloyed threads

with thickness 20-30 microns.

Multiple chips of the same design were fabricated on the same wafer. Probably due to in-

evitable temperature gradients during the fabrication, AA on different chips demonstrated different

low-temperature transport properties such as charge carriers peak mobility or oxide layer thickness.

The experiments were carried out on several samples with effective peak mobility of electrons in
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Figure 3.3: (a) Textolite plate with soldered dip-pin wires (b) The same plate with glued substrate
and welded wires

AA in wide range from 400 to 5000 cm2/Vs. Despite this spread of mobilities, most of the observed

phenomena were shown up in all samples. The mobility had impact only on the magnitude of the

corresponding effects. We demonstrate the data from the representative high mobility sample AA1

and low mobility sample AA2.

3.2 TEM

For detailed sample analysis transmission electron microscope (TEM) FEI Titan 80-300 from Na-

tional Research Center Kurchatov Institute was used. The pictures were obtained by Prikhod’ko

Kirill at the energy of 200keV. The pictures in TEM are produced by transmitted electrons therefore

there is a requirement for thickness of the samples observed in TEM - it has to be not larger than

100nm. The cross-section thin lamella for TEM studies was cut out from the surface region (shown

Figure 3.4: Examples of pictures obtained on TEM: (a) in scanning mode (STEM), scale bar is
1µm; (b) in transmission mode the interface of Si/SiO2. Scale bar is 2nm

by dashed line on fig.3.1b) of the sample using FEI Helios NanoLab 650 focused Ga-ion beam. The

pictures were made as in scanning mode (STEM, see fig.3.4a) when the electron beam is focused
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in dot that moves across the sample, as in conventional mode (see fig.3.4b) for determination of

the smoothness of the transition.

3.3 Magnetotransport measurements

Magnetotransport measurements are one of the main method for investigation of diverse systems.

They are based on the ability of the systems to conduct electrical current. The output data from such

type of measurements is the dependence of conductivity (resistivity) tensor, i.e. the longitudinal

and transverse components, from temperature, magnetic field and other external parameters. As it

was shown above, this data is enough to determine the density and mobility of the charge carriers

in the system. More complex analysis of SdHO and weak localization, for example, can provide

the information about effective mass, mean free path, phase coherence length etc.

Magnetoresistance measurements were performed in the temperature range 0.3-8 K using

Cryogenics 21T/0.3K, PPMS-9 9T/1.5K and CFMS 16T/1.8K systems. AC transport current was

fixed at value 100nA to avoid overheating. All measurements were carried out in the frequency

range 13-18Hz using a standard 4-terminal technique. In 4-terminal technique two contacts are used

for current input/output and voltmeter is connected between the rest ones that are connected directly

to the system. In order to compensate contact asymmetry, magnetic field was swept from positive

to negative values and resistance per square (Hall resistivity) data was then (anti)symmetrized.

As the AC voltage V source internal generator of lock-in amplifier SR-830 (Stanford Re-

search Systems) was used. The resistance of investigated AA has an order of tens of kOhms,

therefore the current was set by resistor with resistance R of order of 1 or 10MOhm which was

connected with AA in series and hence, the transport current J = V
R
. For setting gate voltages the

sources of DC voltage Keithley 320 Programmable Voltage Source, Yokogawa GS200 and inter-

nal source of DC voltage of lock-in were used. As voltmeters the same lock-in amplifiers SR-830

were used. Vxx value was obtained from lock-in connected between Vxx and Vxxxy contact pads,

Vxy value - from lock-in connected between Vxxxy and Vxy. Investigated AA has constant width

w=0.4mm along the whole sample therefore these expressions are valid:

j = jxx =
J

w

Exx =
Vxx

l0

Exy =
Vxy

w

(3.1)

where l0=0.1mm is the distance between Vxx and Vxxxy contacts (where they are connecting to the

AA). These equations lead to the following ones:
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ρxx =
Vxx

J

w

l0

ρxy =
Vxy

J

(3.2)

All measurements were made in the regime of highly conductive media. Indeed, measured

resistance per square (that is always elevated with respect to the S2DEG local resistivity due to

bottleneck effect) is lower than the resistance quantum h/e2 ∼ 25.8 kOhm. Therefore the quasi-

classical treatment of the transport is applicable.

3.4 Cryomagnetic system

Cryomagnetic system is just a cryostat with a superconducting magnet inside. Cryostat is just the

double-wall flask (Dewar flask). Inside the flask helium-4 4He liquid is poured. Helium is used as

the substance that lets to obtain the lowest temperatures, its boiling point is 4.2K at atmospheric

pressure. The design of cryostat is aimed to keep the liquid helium (and, therefore, low temper-

atures) inside as long as possible. Another important task is the temperature stability inside the

cryostat, but these criteria are satisfied simultaneously. Between internal and external walls there

is a reservoir for liquid nitrogen (boiling temperature 77.4K for atmospheric pressure) for lower-

ing the temperature of helium reservoir walls that leads to the reduction of the heat transfer of the

helium and the room. Also between the walls the vacuum is maintaining as the main temperature

transfer is carried out by gas. Internal walls are covered with so-called super-insulation plastic

film that has very poor thermal conductivity with some metal coating (aluminum, for example) for

reflecting of external radiation. Inside the helium reservoir there are also several reflecting screens

for preventing radiation from the top part of cryostat that has room temperature.

The particular structure of cryomagnetic system differs for different systems. Here the inter-

nal structure and the principle of work of cryomagnetic system Cryogenics 21T/0.3K are described

(see fig.3.5a). The most part of measurements were performed using this system. This facility can

provide magnetic fields up to 21T and temperatures down to 0.3K.

The main element of this system that let to get such low temperatures is Variable Tempera-

ture Insert (VTI). This is the insert in the cryostat along the central axis that, in fact, is mini-cryostat

by itself. The stick with sample on the holder (Probe) is placed inside VTI. In this facility VTI with

helium-4 (1.5K is the minimal temperature) and VTI with helium-3 (minimal temperature is 0.3K)

can be used. Let’s consider the structure of the latter one (fig.3.5b).

Internal walls restrict the volume where Probe is placed. Also, as in conventional cryostat

there is a vacuum between internal and external walls for the reduction of the heat transfer between

28



Figure 3.5: (a) The scheme of cryomagnetic system; (b) more detailed scheme of VTI - the most
important part of the facility. The sketch of sample holder is shown on the right

VTI and surrounding helium-4 in the main cryostat. Temperature transfer gas in this VTI is helium-

3 that is very expensive gas therefore the system consisting of the internal volume of VTI and the

external reservoir for helium-3 is sealed for prevention as helium-3 leakage as getting extraneous

substances inside. For control of helium-3 concentration in this system sorption pump is used. It

is, in fact, the absorbent carbon volume that is placed between internal and external walls of VTI

and having holes in the internal volume of VTI. At low temperatures (4-10K) carbon absorbs the

gas from the volume, whereas at high temperatures (higher than 30K) it releases absorbed gas to

the volume. The temperature of sorption pump rises by using heater and drops by turning on the
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heat contact between pump and degree chamber (see below).

The important part of VTI is 1K-pot that is placed between the walls below sorption pump.

This is just the chamber that is connected with the helium reservoir of the main cryostat through

narrow capillary. Capillary is equipped with needle valve - threaded cone that can move opening or

closing the capillary. Unlike the conventional ball valve that has, in fact, only two positions (open

and closed) as the step of the valve is macroscopic, needle valve can regulate the flow through the

capillary. Also 1K-pot can be connected through the hose either to helium net (the external system

of pipes that collects evaporated helium from all facilities of the building for further liquefaction)

or to pump pumping to the helium net. The liquid helium in the reservoir of the main cryostat is

held under the pressure slightly higher than atmospheric one. Therefore, pumping the 1K-pot the

liquid helium from the reservoir of the main cryostat will flow to the 1K-pot. Adjusting this flow by

needle valve the dynamic equilibrium can be reached - the arrival of the helium from the capillary

will be equal to the amount of helium pumping out of the 1K-pot. Thus, the 1K-pot will be filled

with liquid and the saturated steams of helium under pressure lower than the atmospheric one. The

pressure of saturated steams is directly related to the temperature and in 1K-pot the temperature

down to 1.5-1.8K can be obtained. The temperature of the 1K-pot is called the base temperature.

The 1K-pot sets the temperature of the gas inside the VTI at the base temperature value on the

height of 1K-pot. For this purpose 1K-pot is connected with the brass-copper element (having

good thermal conductivity) another edge of which is the internal wall of the VTI on this level. If

the temperature of the sample below the 1K-pot is higher than base temperature, the convection

process in the internal heat transfer gas is activated.

The sample is placed on the holder of the Probe, i.e. almost on the bottom of the VTI. The set

of temperature of the sample depends if this temperature is higher of lower than base temperature.

If the desired temperature is higher than the sample is just heated up by the heater on the Probe.

In this case such temperature of sorption pump is set that there is helium-3 inside the VTI but

not very much to prevent very intensive heat exchange. The power of the heater use regulate the

temperature of the sample as dynamical equilibrium is set between heater and convection of the gas

inside VTI with constant base temperature above the sample. If the desired temperature is lower

than the base one, firstly, the sorption pump is heated up to release all absorbed helium-3. The base

temperature inside is constant whereas the pressure of helium-3 rises that leads to the condensation

of the helium-3 (boiling point is 3.19K for atmospheric pressure). Waiting for some time (from

10 to 40 minutes - it depends on the time which is planned to work with temperatures below base

one) for helium-3 condensation, further the temperature is regulated by the temperature of sorption

pump. Indeed, inside VTI there are the liquid and saturated steams of helium-3, therefore, as was

described above for helium-4 on 1K-pot, the temperature can be regulated by pressure regulation,

i.e. absorption/desorption of helium-3 from the volume/sorption pump. Such process can set the
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temperatures down to limit 0.3K on the sample.

As it is cryomagnetic system, there should be the sources of magnetic field. In this cryostat

for the creation of magnetic field the system of concentric coils is used (see fig.3.5a): three internal

ones from Nb3Sn mounted on the holders from stainless steel, and the external one from NbTi

mounted on the aluminum holder. Coils are connected in series on the top dielectric flange. From

the most internal and external coils HTSC (high-temperature superconducting) current leads are

going up till the level of nitrogen reservoir (while they are still superconducting) for reduction of

thermal supply. Then conventional wires are going to the top of the cryosat and connected to the

terminals that connects directly to the current source. In parallel with magnet superconducting key

is connected. It is used for field fixation. When the field is changing, the heater is working and the

key is in normal state, i.e. has non-zero resistance, therefore the current predominantly is flowing

through the magnets that are superconducting. If the freezing of the field is necessary the heater is

turning off, the key is going to superconducting state, the current through the source is lowering to 0

and the current is closed in circuit key-magnet. At T=4.2K coils can produce maximum 20T. There

is a lambda-plate above the magnet which, in fact, is the same as 1K-pot, i.e. the cavity that can

be pumped and is connected with helium reservoir through the capillary regulated by needle valve.

The principle of the temperature decrease is the same as was described above for 1K-pot. The

thermal conductivity of liquid helium is very low, so that the cooling of the helium above the plate

does not occur, but below the plate the convection is activated: the helium is at 4.2K, the plate has

lower temperature. This way the temperature of the magnet can be lowered down to 2.5K. Critical

current at this temperature is higher and the maximum field obtained in this facility is 20.939T.
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Chapter 4

Results

4.1 Effective density

Investigated system is heterogeneous therefore it is considered as effective media. It is straight-

forwardly characterized by effective Hall density (neff ≡ [eRxy(B = 1T)]−1 from expr.2.26) and

effective carrier mobility (µeff ≡ (neffeϱ)
−1 also from expr.2.26). Here and further ϱ is the mea-

sured resistance per square.

Firstly, the neff dependency on Vg and Va was analyzed. Experimentally observed neff (Vg)

dependencies (for three various Va values, shown on fig.4.1) are in contrast with the expectation

of linear dependency for homogeneous system. The reason for the deviations is artificial non-

uniformity of the system. Such behavior reflects different regimes of transport current flow distri-

bution. It is possible to distinguish the ranges of gate voltages that correspond to various current

density distribution (schematically shown by letters (a)-(d) in the main panel and also in the cor-

responding panels under the graph on fig.4.1). The higher transport current density is shown by

lighter color.

For Vg high enough (figures 4.1(a) and 4.1(b)), S2DG is very conductive because of high

electron density. Due to edge effects and larger gate-to-2DEG distance, shells have lower electron

density and hence smaller conductance. Therefore, transport current flows predominantly through

the S2DG and Hall effect, i.e. neff (Vg), is determined by its density. It means that the islands have

small impact on neff (Vg) dependence.

For small values of Vg (figures 4.1(c) and 4.1(d)) the S2DG density and conductivity de-

creases and contribution of islands to the transport rises. Increase of the Va value makes the islands

much more conductive than S2DG. Therefore transport current prefers to flow through islands

and minimizes the path through the S2DG. Thus the effective density neff increases (relatively to

density defined by Vg) since the Hall voltage is determined by the islands. As Vg increases, the

contribution of depleted S2DG rises leading to the drop of the neff (figure 4.1(d)).

For Vg and Va low enough, both S2DG (unlike case b) and islands (unlike case d) are poorly

conductive. Low conductance of both regions force transport current to flow through the whole

perimeter of the shell. This leads to the elevated role of the low-density shells and the visible
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Figure 4.1: The Hall density at T=1.8K for sample AA2 vs S2DG gate voltage for three representa-
tive island gate voltages. Inset shows the similar data for the high-mobility sample AA1. In panels
(a)-(d) the higher electron density the lighter area. Panels (a)-(d) correspond to the domains of the
voltages designated by the same letter on the graph.

increase of the Hall voltage, i.e. drop of neff value (case c on the fig.4.1).

The effective density data, shown in fig.4.1, demonstrating an enhanced drop in low-Va/

low-Vg region, were obtained for low-mobility sample AA2. For high-mobility sample AA1 (inset

to fig.4.1), despite the absence of the drop, a similar tendency is clearly seen: neff value decreases

with Vg growth at high Va and this effect vanishes as Va is lowered. This data show that the effective

density in the macroscopically inhomogenious systems follows the same physics irrespectively of

mobility.
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Figure 4.2: Magnetoresistance (black curves) and Hall coefficient (red curves) of sample AA1 at
T=0.3K in regime of current through antidots (a), current through S2DG (b) and elevated role of
shells (c). (d) Hall coefficient of sample AA2 vs magnetic field for four different temperatures.
For convenience, curves shifted such that their edges (at B=5T) coincide (curve for 0.3K remained
unchanged). (e) and (f) are enlarged areas from panels (a) and (b), respectively, shown by dashed
rectangles which demonstrate the splitting of minima of magnetoresistance. (g) Schematics of
Zeeman-splitted Landau levels in density of states vs energy diagram. Fermi levels for magnetic
fields B1 and B2 (indicated in panel (e)) are shown by dashed lines.

4.2 Magnetoresistance and Hall measurements

Thus, different regimes of current transport in artificially inhomogeneous tunable media were es-

tablished. In order to explore the differences between the regimes b, c, and d (here and further des-

ignations are taken from fig.4.1) more detailed magnetotransport measurements were performed.

We chose Hall coefficient (Rxy/B) to visualize the difference between AA and uniform system,

where Rxy/B is roughly field-independent.

Fig.4.2(a) shows magnetoresistance (ϱ) and Hall coefficient in the regime dwhere transport

is dominated by islands. Though the effective ϱ is about 15 kOhms (i.e. ∼ e2/h), pronounced SdHO

are observed due to the high mobility electron gas in the islands. Electron density obtained from

SdHO (nSdH ≈ 1.4 × 1012cm−2) is higher than the Hall density (neff ≈ 1 × 1012cm−2) because

the latter is affected also by S2DG bottlenecks. Hall coefficient is a non-monotonic function of

magnetic field with a maximum at B = 0.
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For comparison in fig.4.2(b) magnetoresistance and Hall coefficient of the system in regime

b with Va = 0 are shown. Vg value was adjusted to make neff approximately equal to the value

from fig.4.2(a). Effective ϱ ≈ 3kOhms value is about 5 times less because S2DG in this case is

well-conductive and transport current bypasses the depleted regions. SdHO are also observed with

nSdH ≈ 0.9× 1012cm−2 comparable to neff ≈ 1.2× 1012cm−2. At B = 0 Hall coefficient in this

case has minimum.

Finally, fig.4.2(c) showsmagnetoresistance andHall coefficient in low-density regime some-

where between b and c. The gate voltages were adjusted to make ϱ approximately equal to the

value from fig.4.2(a). The behavior of the transport is completely different from fig.4.2(a) and

qualitatively similar to fig.4.2(b) without SdHO. Hall coefficient has minimum at zero field. This

data straightforwardly demonstrates that contrary to non-modulated 2DES, the magnetotransport

reflects complexity of carrier density redistribution and is not determined by the value of the effec-

tive resistivity.

The common tendency for all Hall coefficient data is the growth with the magnetic field.

In homogeneous system Hall coefficient is constant and directly corresponds to electron density

Rxy/B = 1/ne. In the studied system there are regions with different densities. For Si MOSFETs

it is known that electron mobility is density-dependent (µ generally grows with n, then reaches a

steep maximum and decreases slowly for very large carrier densities) [38]. In magnetic field the

longitudinal conductivity σxx decreases∝ (1+(µB)2)−1, i.e. the higher the mobility, the faster the

decrease. Thus, with increasing the field the conductivity of low-density regions decreases slower

than the one of high-density regions. Since the current prefers to flow through high-conductive

regions, with increasing field current redistributes so that the role of low-density low-mobility

regions increases. Therefore, Hall coefficient should rise, in agreement with experimental data.

Exactly this mechanism was suggested in the paper[39] with first measurements of these samples.

In small magnetic field Hall coefficient experiences an abrupt feature. The bare 2D gas

in Si-MOSFETs also has a small low-field Hall nonlinearity, discussed in detail in Ref.[40] and

reported for the similar samples in Ref.[39]. However, the huge amplitude of the low-field Hall

coefficient variation in fig.4.2 clearly identifies it with the sample nonuniformity. Interestingly,

low-field quenching of transverse magnetoresistance (and even change of its sign) has already been

explored in various artificially inhomogeneous and mesoscopic systems. First experiments in 1D

wires by Roukes [41] were further theoretically explained [42] by scrambling of electron trajec-

tories on crossroad in a place of contacts. The authors speculated that quenching is unambiguous

manifestation of 1D transport. Here it is worth to note that all available theories in 1D or 2D systems

are essentially ballistic. In further experiments with ballistic antidot arrays[43] the quenching of

the Hall effect was also observed, although the qualitative pinball picture didn’t account for attenu-

ation of Hall coefficient. In the more recent experiments on 2D systems with AA [44] the observed
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quenching of Hall effect was confirmed by numerical simulations, but no physical mechanism was

suggested.

Investigated here system is essentially different, because the transport is diffusive and the

inhomogeneities are tunable from dots (areas of low potential, Va > Vg) to antidots (areas of high

potential, Va < Vg). Zero-field Hall coefficient in our experiments can either grow or fall with

B depending on Vg and Va. Origin of different behavior is unclear and requires further theoretical

investigation. Suppression of the zero-field Hall coefficient quenching with temperature (fig.4.2(d)

for sample AA2) is the indicator, that this feature is related to weak-localization phenomenon. We

believe that low-field feature in Hall coefficient comes from redistribution of transport current in

the regime of weak localization. This assumption is totally nontrivial: firstly, it is a textbook knowl-

edge that in homogenous medium weak localization does not influence the Hall resistivity[45] and,

secondly, the relative value of the observed nonlinearity is rather high (few 10%), larger than weak

localization correction to resistivity in the bare 2D gas. Present results thus call for theoretical mod-

eling of the weak localization in the presence of macroscopic modulation. Moreover, it might be

that sample inhomogeneity is a clue to understanding the often observed and not always explained

low-field feature in the other 2D systems [40, 46, 47].

Another unusual, yet high-field magnetotransport effect is the splitting of the minima of

the longitudinal magnetoresistance ϱ (enlarged domains from figs.4.2(a-b) are shown in figs.4.2(e-

f)). As a rule, as magnetic field increases, and Zeeman term exceeds the temperature and Landau

level broadening (see fig.4.2g for the schematics of the density of states), the resistivity maxima

are split. Indeed, in uniform 2D systems in SdH domain Hall resistivity ρxy is higher than ρxx and

the maxima of the conductivity σxx = ρxx/(ρ
2
xx + ρ2xy) ≈ ρxx/ρ

2
xy at the half-integer filling factors

correspond to the maxima of the resistivity and maxima of the density of states.

In samples that investigated here, effective resistance per square ϱ is higher than Rxy in

SdH domain. If the areas of antidots were just infinite barriers for electrons, it would only change

the geometrical factor w/l and would not turn minima to maxima. In other words, the resistance

per square should increase but the ϱ(B)/ϱ(B = 0) ratio should remain unchanged. Meanwhile in

our system ϱxx minima appear to be splitted. It is worth to note that splitting is observed both in

regime b (current through S2DG) either in regime d (current mainly through islands).

We suggest that this splitting might be explained if the equation σeff
xx = ϱ/(ϱ2+R2

xy) holds

correct for the resistance per square. Then σeff
xx ≈ 1/ϱ and conductivity maxima (coinciding with

the maxima of Zeeman-splitted density of states at Fermi level, shown in fig.4.2g) correspond to the

resistance per square minima. This suggestion is not expected to be valid because conductivity and

resistivity are local properties, whereas the resistance per square is the macroscopic characteristic

of the sample. In other words, effective conductivity approach is surprisingly applicable not locally

but rather to the overall system.
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4.3 Metallic behavior of resistivity

Since in some of models suggested for explanation of metal-insulator transition in 2D systems the

system was believed to be essentially non-uniform at the microscale [48, 50, 49] it was decided to

examine how the artificially tunable inhomogeneity in presented here AA affect 2D “metallicity”.

In order to quantify “metallicity” experimentally it was taken the relative variation κ ≡
(ϱ7.4−ϱ1.8)/ϱ1.8, where ϱ1.8 and ϱ7.4 values were measured at experimentally convenient tempera-

tures 1.8K and 7.4K respectively. Thus, κ never drops below -1, and relatively big positive values

of κ correspond to strong “metallic” behavior and negative values - to insulator. Figure 4.3(a)

shows κ versus Vg dependence for different values of Va for high-mobility sample AA1. The inset

shows a similar series of κ(Vg) dependencies for low-mobility sample AA2. Insignificant distinc-

tion is that temperature reference points used for sample AA2 were 2.1K and 8K, respectively. This

difference is connected only with experimental conveniences.

At high values of Vg, when the system is deep in the conductive domain κ tends to zero for

both low and high-mobility samples. This behavior is caused by (i) weakening of electron-electron

interactions at elevated densities and (ii) domination of the S2DG in conductance of the system,

i.e. transport properties of antidot array for large Vg are equivalent to bare 2D gas, as expected.

For small values of Vg κ depends dramatically on the value of Va and on the mobility of the

sample.

For high-mobility sample and small values of Va there is a strong “metallic” conductivity:

κ is positive, quite large (about 1.5), and drops monotonically with Vg, as it should be for bare 2D

gas in Si-MOSFET[35], because the islands areas are out of the game. However for high values of

Va “metallic” conductivity becomes suppressed for all values of Vg and κ for sample AA1 becomes
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Figure 4.3: (a) Relative change of resistivity of AA1 with temperature (from 1.8K to 7.4K) κ vs
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non-monotonic and goes to zero at small Vg.

For lowmobility sample AA2 as Va increases weakly positive κ for low Vg turns to negative.

Fig.4.3(b) represents the temperature dependence of the resistivity of low-mobility sample. On the

main graph dependencies for different S2DG voltage Vg and same antidots voltage Va are shown

to demonstrate the degeneracy of metallic behavior with increase of Vg. The same tendency with

Va increase at fixed Vg is reflected in inset. In other words filling the islands with electrons turns

the system to “insulating” behavior, no matter how large the mobility is.

The following explanation of this phenomena is suggested. For small values of Va islands

areas are “closed” for electrons. However for high values of Va current flows to the islands and, as

result, inevitably flows through the shells. The latter have strong insulating behavior that cause the

suppression of κ. Thus, we demonstrate and explain qualitatively that our effective media allows

to tune 2D “metallicity”.

This observation might also help to understand the answer to the question why the strength

of the metallicity in Si-MOSFETs is the highest among other system despite the relatively low

mobility. Indeed, in the highest mobility Si-MOSFETS (µpeak ∼ 3−4 ·104cm2/Vs), the resistance

increases almost by an order of magnitude with temperature[35], and strong metallicity is observed

at relatively high carrier densities (few 1011 cm−2). In the other material systems with mobilities

exceeding 105 cm2/Vs and much lower carrier densities (∼ 1010 cm−2, e.g. Si/SiGe quantum

wells[51], n-GaAs [52], p-GaAsTO[53], etc.) the growth of the resistivity with temperature is

typically smaller than a factor of 2. All these highmobility systems have smooth impurity potential,

similarly to tunable part of potential due to artificital modulation in the antidot array. This potential

might be one possible mechanism for the metallicity suppression. Indeed, in low carrier density

materials the relative fluctuations of charge distribution are much larger and their role should be

re-examined.
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Chapter 5

Discussion

5.1 Metal-insulator transition point

Since Ioffe and Regel[54] it is common knowledge that the boundary between metal and insula-

tor corresponds to kF l ∼ 1. In uniform 2D systems this criterion means that the conductivity is

about e2/h ∼ 1/26 kOhm . Below this value the wave functions at Fermi energy are localized

and system is supposed to have insulating temperature dependence of the resistivity. Above this

value the temperature dependence of the resistivity within non-interacting picture should be either

weak insulating or metallic, in case of strong electron-electron interactions. The ultimate bound-

ary between metal and insulator can be, of course, introduced only at T = 0, when the coherence

length is infinite. For macroscopic antidot array similar to investigated here, the low temperature

limit can hardly be achieved, since it requires mK and sub-mK temperatures. S2DG is responsible

for metal to insulator transition, while the geometrical factor (effective length-to-width ratio) in

such system is enhanced. Therefore the threshold resistance per square in antidot array is elevated,

and 26 kOhm is not a dogma for macroscopically modulated system anymore. E.g. in presented

here samples vanishing temperature dependence of the resistivity for about 50-80 kOhm effective

sample resistance was observed.

5.2 Phase diagram.

The results are summarized in the phase diagram of the system in (Vg;Va) plane in fig.5.1. For very

low values of Vg the system doesn’t conduct, i.e. it is in insulating state. For low values of Vg the

value of Va is decisive. If Va is high enough, the system is in the island-dominated regime: current

flows in the low-resistance islands and minimizes the path through the narrow bottlenecks between

them. In this regime Hall density is elevated and Shubnikov-de Haas density is given by islands.

Metallic temperature dependence of the conductivity is suppressed because total resistivity of the

system is determined by bottlenecks between islands and S2DG.

For low values of Va the system is in the “shell-dominated” regime when current flows

without preferences spreading out over the whole system. And for high values of Vg again there is
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Figure 5.1: Schematic phase diagram of the system in space of S2DG (vertical) and islands (hori-
zontal) electron density.

no big difference between low and high values of Va because islands are almost out of the game,

the system is in the S2DG-dominated regime: current bypasses islands flowing through S2DG.

Role of periodicity. Interestingly, the periodic structure (i.e. equivalence of all islands and

inter-island necks) is important. In our case the period of the structure is 5 µm and there are only 80

periods across the 400 µm wide sample. If the system was more random, like e.g. [55], transport

through it would be governed by percolation cluster and lateral cluster size could easily exceed 80

periods. In this case the properties of the system would be irreproducible and very large samples

were needed for averaging, thus hindering the systematic studies and possible applications.
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Chapter 6

Conclusion

To sum up, transport properties of the macroscopically non-uniform and tunable Si-based 2DES

were experimentally examined. Such system has two gates for controlling the densities in the

islands and residual 2D gas separately. The conductive properties of this system turn out to depend

on both gate voltages Vg and Va. In order to explain different behavior of the system under different

gate voltages simple classical considerations about the current flowwithin 2DESwere applied. The

phase diagram of the system in coordinates electron density in the islands vs electron density in

the 2D gas was defined. In this phase diagram various transport regimes were identified from the

analysis of the Hall effect and magnetotransport: insulating, 2D gas dominating, island dominating

and shell dominating.

In high magnetic field, independently on the regime of transport, Hall coefficient grows

with field, in agreement with current flow redistribution towards the lower density lower mobility

regions[39]. The behavior of the Hall coefficient in low magnetic field is puzzling. The sign of

the low magnetic field correction to Hall effect depends on whether conductivities of the islands

are high or not. Temperature and magnetic field dependencies of the low-field Hall effect were ex-

plored, it turned out that they are quite strong that signifies that this low-field feature is presumably

related to weak localization. This observation is not trivial and yet has to be explained. At elevated

magnetic field, in the domain of Shubnikov-de Haas oscillations a novel effect was uncovered -

Zeeman splitting of the resistivity minima, opposite to Zeeman splitting of the resistivity maxima,

observed in homogeneous systems. Also the suppression of the metallic temperature dependence

of the resistivity, inherent for Si-MOSFETs, was demonstrated and qualitative explanation of this

effect was proposed.
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